Câu hỏi:
22/11/2024 11,697
Cho hình lập phương
Có bao nhiêu cạnh của hình lập phương chéo nhau với đường chéo của hình lập phương?
Có bao nhiêu cạnh của hình lập phương chéo nhau với đường chéo của hình lập phương?
A. 2
B. 3
C. 4
D. 6
Trả lời:
Đáp án đúng: D
* Lời giải:
Các cạnh chéo nhau với đường chéo của hình lập phương là: A'B', A'D', DD', CD, BC, BB'
* Phương pháp giải:
- Nắm lại tính chất về đường thẳng chéo nhau trong mặt phẳng không gian
*Một số lý thuyết và dạng bài tập về đường thẳng và mặt phẳng trong không gian:
1.Điểm thuộc mặt phẳng.
Cho điểm A và mặt phẳng (α).
- Khi điểm A thuộc mặt phẳng (α) ta nói A nằm trên (α) hay (α) chứa A, hay (α) đi qua A và kí hiệu là .
- Khi điểm A không thuộc mặt phẳng (α) ta nói điểm A nằm ngoài (α) hay (α) không chứa A và kí hiệu là .
Hình trên cho ta hình biểu diễn của điểm A thuộc mặt phẳng , còn điểm B không thuộc (α).
2. Các tính chất thừa nhận về đường thẳng và mặt phẳng trong không gian
- Tính chất 1. Có một và chỉ một đường thẳng đi qua hai điểm phân biệt
- Tính chất 2. Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng.
Một mặt phẳng hoàn toàn xác định nếu biết nó đi qua ba điểm không thẳng hàng. Ta kí hiệu mặt phẳng đi qua ba điểm không thẳng hàng A, B, C là mặt phẳng (ABC) hoặc mp(ABC) hoặc (ABC).
- Tính chất 3. Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó.
Nếu mọi điểm của đường thẳng d đều thuộc mặt phẳng (α) thì ta nói đường thẳng d nằm trong (α) hay (α) chứa d và kí hiệu là hay .
- Tính chất 4. Tồn tại bốn điểm không cùng thuộc một mặt phẳng.
Nếu có nhiều điểm cùng thuộc một mặt phẳng thì ta nói những điểm đó đồng phẳng, còn nếu không có mặt phẳng nào chứa các điểm đó thì ta nói chúng không đồng phẳng.
- Tính chất 5. Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng còn có một điểm chung khác nữa.
Từ đó suy ra: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng sẽ có một đường thẳng chung đi qua điểm chung ấy.
Đường thẳng chung d của hai mặt phẳng phân biệt (α) và (β) được gọi là giao tuyến của (α) và (β) và kí hiệu là .
- Tính chất 6. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng đều đúng
3. Vị trí tương đối của hai đường thẳng trong không gian.
Cho hai đường thẳng a và b trong không gian. Khi đó có thể xảy ra một trong các trường hợp sau:
- Trường hợp 1. Có một mặt phẳng chứa a và b.
Khi đó, ta nói a và b đồng phẳng. Theo kết quả của hình học phẳng có 3 khả năng xảy ra:
i) a và b có điểm chung duy nhất M. Ta nói a và b cắt nhau tại M và kí hiệu . Ta có thể viết .
ii) a và b không có điểm chung. Ta nói a và b song song với nhau và kí hiệu là a // b.
iii) a trùng b, kí hiệu là .
- Trường hợp 2. Không có mặt phẳng nào chứa a và b.
Khi đó ta nói a và b chéo nhau hay a chéo với b.
4. Tính chất về đường thẳng song song và đường thẳng chéo nhau trong không gian
- Định lí. Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho.
- Định lí (về giao tuyến của ba mặt phẳng).
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau.
- Hệ quả. Nếu hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) cũng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
5. Vị trí tương đối của đường thẳng và mặt phẳng.
Cho đường thẳng d và mặt phẳng (α). Tùy theo số điểm chung của d và (α), ta có ba trường hợp sau:
- d và (α) không có điểm chung. Khi đó ta nói d song song với (α) hay (α) song song với d và kí hiệu là d // (α) hay (α) // d.
- d và (α) chỉ có một điểm chung duy nhất M. Khi đó ta nói d và (α) cắt nhau tại điểm M và kí hiệu .
- d và (α) có từ hai điểm chung trở lên. Khi đó, d nằm trong (α) hay (α) chứa d và kí hiệu .
6. Tính chất về đường thẳng và mặt phẳng song song
- Định lí. Nếu đường thẳng d không nằm trong mặt phẳng (α) và d song song với đường thẳng d’ nằm trong (α) thì d song song với (α).
- Định lí. Cho đường thẳng a song song với mặt phẳng (α). Nếu mặt phẳng (β) chứa a và cắt (α) theo giao tuyến b thì b song song với a.
- Hệ quả. Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
- Định lí. Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.
Xem thêm các bài viết liên quan hay, chi tiết
Lý thuyết Ôn tập chương 2 - Hình học (mới 2024 + Bài Tập) - Toán 11
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD. Điểm M thuộc đoạn BC. Mặt phẳng qua M song song với AB và CD. Thiết diện của với tứ diện ABCD là:
Câu 2:
Cho tứ diện đều SABC. Gọi I là trung điểm của đoạn AB, M là điểm di động trên đoạn AI. Qua M vẽ mặt phẳng song song với Thiết diện tạo bởi với tứ diện SABC là:
Cho tứ diện đều SABC. Gọi I là trung điểm của đoạn AB, M là điểm di động trên đoạn AI. Qua M vẽ mặt phẳng song song với Thiết diện tạo bởi với tứ diện SABC là: