Câu hỏi:
23/07/2024 198Tìm tất cả các giá trị thực của tham số m để hàm số y=x2-mx+4x-m liên tục và đạt giá trị nhỏ nhất trên [0;4] tại một điểm xo∈(0;4) .
A. m > 2
B. 0 < m < 2
C. -2<m<0
D. -2<m<2
Trả lời:

Đáp án đúng : C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tất cả các giá trị thực của tham số m để hàm số đồng biến trên khoảng
.
Câu 2:
Tìm tập hợp tất cả các giá trị thực của tham số m để hàm số nghịch biến trên D=[ 2;+∞).
Câu 3:
Tìm tất cả các giá trị thực của tham số m để hàm số nghịch biến trên ℝ
Câu 5:
Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên ℝ
Câu 7:
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y = m cắt đồ thị hàm số y=x3-3x2 tại 3 điểm phân biệt A, B, C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc
Câu 8:
Tìm tất cả các giá trị thực của tham số m để hàm số đồng biến trên ℝ
Câu 9:
Tìm tất cả các giá trị thực của tham số m để hàm số nghịch biến trên ℝ.
Câu 10:
Cho hàm số có đồ thị là đường cong (C). Biết rằng tồn tại hai số thực m1,m2 của tham số m để hai điểm cực trị của (C) và hai giao điểm của (C) với trục hoành tạo thành bốn đỉnh của một hình chữ nhật. Tính
.
Câu 11:
Cho hàm số . Tìm tất cả các giá trị của tham số m để hàm số y=f(|x|) có 5 điểm cực trị.
Câu 14:
Có bao nhiêu số nguyên âm m để hàm số y=13cos3x-4cotx-(m+1)cosx đồng biến trên khoảng (0;π)?
Câu 15:
Tìm tất cả các giá trị thực của m để hàm số y=cosx-mcosx+mđồng biến trên khoảng (π2;π) .