Câu hỏi:
16/07/2024 186Một tổ học sinh có 5 nam và 5 nữ xếp thành 1 hàng dọc sao cho không có học sinh cùng giới tính đứng kề nhau. Số cách xếp là:
A. 5!.5!
B. 2.(5!)2
C. 10!
D. 2.5!
Trả lời:
Theo bài ra, ta thấy cách sắp xếp chính là việc nam nữ đứng xen kẽ nhau.
Như vậy sẽ có hai trường hợp, hoặc là bạn nam đứng đầu hàng hoặc là bạn nữ đứng đầu hàng
+ Trường hợp 1: Nam đứng đầu:xếp vào các vị trí lẻ có 5!
Xếp 5 bạn nữ vào 5 vị trí còn lại có 5 !
Do đó, có 5!.5! =
+ Trường hợp 2: Nếu bạn nữ đứng đầu:
Tương tụ , có
Vậy số cách sắp xếp cần tìm 2.(5!)2.
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho X={1;2;3;4;5;6;7;8;9}. Từ X lập được bao nhiêu số sao cho Có 3 chữ số khác nhau và nhỏ hơn 496
Câu 2:
Cho một hộp 10 viên bi gồm 6 bi xanh và 4 bi vàng (mỗi viên bi có kích thước khác nhau). Hỏi có bao nhiêu cách xếp 10 viên bi vào hộp thành một hàng ngang sao cho không có bi vàng nào cạnh nhau?
Câu 3:
Một người có 7 chiếc áo sơ mi, trong đó có 3 chiếc áo sơ mi trắng; có 5 cái cà vạt trong đó có 2 cà vạt màu vàng. Hỏi người đó có bao nhiêu cách chọn một chiếc áo và một cà vạt thỏa mãn điều kiện: nếu chọn áo trắng thì không chọn cà vạt màu vàng
Câu 4:
Có bao nhiêu số gồm 7 chữ số đôi một khác nhau được lập bằng cách dùng 7 chữ số 1;2;3;4;5;7;9 sao cho hai chữ số chẵn không liền nhau?
Câu 5:
Từ 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau, sao cho trong các chữ số đó có mặt chữ số 0 và 1.
Câu 6:
Cho tập hợp A={ 1;2;3;4;5;6;7;8}. Có bao nhiêu tập hợp con X của tập A thỏa mãn điều kiện chứa 1 và không chứa 2?
Câu 7:
Trong một buổi giao lưu, có 5 học sinh trường X và 5 học sinh trường Y ngồi vào 2 bàn đối diện nhau. Hỏi có bao nhiêu cách xếp sao cho 2 người ngồi đối diện và ngồi cạnh thì khác trường nhau.
Câu 8:
Có 4 cuốn sách toán khác nhau, 3 sách lý khác nhau, 2 sách hóa khác nhau. Muốn sắp vào một kệ dài các cuốn sách cùng môn kề nhau, 2 loại toán và lý phải kề nhau thì số cách sắp là:
Câu 10:
Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?
Câu 11:
Từ các số 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau và hai chữ số 1 và 2 không đứng cạnh nhau.
Câu 12:
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Câu 13:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
Câu 14:
Một chồng sách gồm 4 quyển sách Toán, 3 quyển sách Vật lý, 5 quyển sách Hóa học. Hỏi có bao nhiêu cách xếp các quyển sách trên thành một hàng ngang sao cho 4 quyển sách Toán đứng cạnh nhau, 3 quyển Vật lý đứng cạnh nhau?
Câu 15:
Có bao nhiêu số tự nhiên trong đó các chữ số khác nhau ; nhỏ hơn 10000 được tạo thành từ năm chữ số: 0;2;5;7;8?