Câu hỏi:
21/07/2024 2,247Một nhóm công nhân gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một tổ công tác sao cho phải có 1 tổ trưởng nam, 1 tổ phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách lập tổ công tác?
A: 10
B: 390
C: 130
D: 111300
Trả lời:
Chọn 2 trong 15 nam làm tổ trưởng và tổ phó có cách.
sau khi chọn 2 nam thì còn lại 13 bạn nam. Chọn 3 tổ viên, trong đó có nữ.
+) chọn 1 nữ và 2 nam có cách.
+) chọn 2 nữ và 1 nam có cách.
+) chọn 3 nữ có cách.
Vậy có cách.
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tập A={1;2;3;4;5;6;7;8}. Có bao nhiêu tập con của A chứa số 2 mà không chứa số 3
Câu 2:
Có một hộp đựng 5 viên bi xanh, 6 viên bi đỏ và 4 viên bi vàng. Có bao nhiêu cách lấy ra 9 viên bi có đủ 3 màu.
Câu 3:
Đội thanh niên xung kích có của một trường phổ thông có 12 học sinh, gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này thuộc không quá 2 trong ba lớp trên. Hỏi có bao nhiêu cách chọn như vậy?
Câu 4:
Có bao nhiêu số tự nhiên gồm 7 chữ số trong đó các chữ số cách đều số đứng giữa thì giống nhau ?
Câu 5:
Từ một tổ gồm 6 bạn nam và 5 bạn nữ, chọn ngẫu nhiên 5 bạn xếp vào bàn đầu theo những thứ tự khác nhau sao cho trong cách xếp trên có đúng 3 bạn nam ngồi bàn đầu đó. Hỏi có bao nhiêu cách xếp.
Câu 6:
Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp sao cho 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?
Câu 7:
Một tổ có 5 nam và 3 nữ, trong đó có 2 bạn A và B. Hỏi có bao nhiêu cách xếp tổ trên thành một hàng ngang sao cho A và B đứng cách nhau hai người.
Câu 8:
Xếp 3 bi đỏ có bán kính khác nhau và 3 bi xanh giống nhau vào 1 hộp có 7 ô trống.Có bao nhiêu cách xếp khác nhau sao cho 3 bi đỏ xếp cạnh nhau và 3 bi xanh xếp cạnh nhau.
Câu 9:
Từ các số 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên gồm 4 chữ số đôi một khác nhau và không bắt đầu bằng chữ số 1
Câu 10:
Từ các số của tập A={1;2;3;4;5;6;7} lập được bao nhiêu số tự nhiên gồm năm chữ số đôi một khác nhau, đồng thời hai chữ số 2 và 3 luôn đứng cạnh nhau
Câu 11:
Cho X={0;1;2;3;4;5;6;7}. Có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau từ X sao cho một trong 3 chữ số đầu tiên phải có mặt chữ số 1
Câu 12:
Một nhóm sinh viên có 4 nam 2 nữ ngồi vào 9 ghế hàng ngang. Hỏi có bao nhiêu cách xếp sao cho nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có ít nhất 2 ghế?
Câu 13:
Từ các số 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên Gồm 6 chữ số đôi một khác nhau và hai chữ số 1 và 2 không đứng cạnh nhau.
Câu 14:
Xếp 3 bi đỏ có bán kính khác nhau và 3 bi xanh giống nhau vào 1 hộp có 7 ô trống. Hỏi có bao nhiêu cách sắp xếp khác nhau.
Câu 15:
Cho tập A={1;2;3;4;5;6;7;8} Từ các chữ số thuộc tập A, lập được bao nhiêu số tự nhiên lẻ gồm 5 chữ số không bắt đầu bởi 123.