Câu hỏi:
12/11/2024 129Hàm số nào dưới đây đồng biến trên tập xác định của nó?
Trả lời:
Đáp án đúng: B
*Lời giải:
Ta có hàm số đồng biến trên khi a > 1 nên chọn đáp án B.
*Phương pháp giải:
- Dựa vào tính đơn điệu của hàm số mũ: Cho hàm số y = ax, (a > 0; a ≠ 1). Khi đó:
Nếu a > 1 thì hàm số đồng biến trên R
Nếu 0 < a < 1 thì hàm số nghịch biến trên R
*Các dạng bài tập thường gặp sự đồng biến/nghịch biến của hàm mũ:
* Phương pháp chung:
Bước 1: Tìm tập xác định D.
Bước 2: Tính đạo hàm y' = f'(x).
Bước 3: Tìm nghiệm của f'(x) hoặc những giá trị x làm cho f'(x) không xác định.
Bước 4: Lập bảng biến thiên.
Bước 5: Kết luận.
- Dựa vào tính đơn điệu của hàm số mũ:
Cho hàm số y = ax, (a > 0; a ≠ 1). Khi đó:
Nếu a > 1 thì hàm số đồng biến trên R
Nếu 0 < a < 1 thì hàm số nghịch biến trên R
* Dạng bài toán:
Dạng 1: Tìm giá trị của m để hàm số đơn điệu trên R.
* Phương pháp làm bài:
– Bước 1: Tính f′(x).
– Bước 2: Nêu các điều kiện của bài toán:
+ Hàm số y=f(x) đồng biến trên R⇔y′=f′(x)⩾0,với ∀x∈R và y′=0 tại một hữu hạn điểm.
+ Hàm số y=f(x) nghịch biến trên R⇔y′=f′(x)⩽0,với ∀x∈R và y′=0 tại một hữu hạn điểm.
– Bước 3: Từ các điều kiện trên sử dụng các kiến thức về dấu của nhị thức bậc nhất và tam thức bậc hai để tìm m.
Dạng 2: Tìm m để hàm số đơn điệu trên miền D đã cho trước.
* Phương pháp làm bài:
– Bước 1: Nêu các điều kiện để hàm số đơn điệu trên D:
+ Hàm số y=f(x) đồng biến trên D⇔y′=f′(x)⩾0, với ∀x∈D.
+ Hàm số y=f(x) nghịch biến trên D⇔y′=f′(x)⩽0,với ∀x∈D.
– Bước 2: Từ điều kiện trên hãy sử dụng các cách suy luận khác nhau cho từng bài toán để tìm m.
- Bước 3: Kết luận
c) Dạng 4: Tìm m để hàm số đồng biến, nghịch biến trên khoảng
– Bước 1: Tính y′
– Bước 2: Nêu điều kiện để hàm số đồng biến và nghịch biến:
– Bước 3: Đưa ra kết luận.
Xem thêm các bài viết liên quan hay, chi tiết:
Trắc nghiệm Sự đồng biến, nghịch biến của hàm số (có đáp án)
Bài tập Sự đồng biến nghịch biến của hàm số Toán 12 mới nhất
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Có bao nhiêu giá trị nguyên của m thuộc khoảng (-2019;2019) để hàm số sau có tập xác định là
Câu 5:
Có bao nhiêu giá trị nguyên của tham số m trên [-2018;2018] để hàm số có tập xác định là ?
Câu 9:
Cho hàm số . Biết rằng ,f(2) + f(3) + ....+f(2020) = ln trong đó , là phân số tối giản, a, b. Tính b - 3a
Câu 11:
Đồ thị hàm số y = f(x) đối xứng với đồ thị hàm số qua điểm I(2;1). Giá trị của biểu thức bằng
Câu 15:
Tìm tất cả các giá trị thực của tham số m để hàm số có tập xác định là .