Câu hỏi:
23/07/2024 166Cho phép biến hình sao cho với mọi thì thỏa mãn. Gọi G là trọng tam tam giác ABC với . Phép biến hình F biến hình ABC thành A’B’C’, khi đó trọng tâm G’ có tọa độ:
A.
B.
C.
D. không tồn tại G’
Trả lời:
Đáp án D
Áp dụng biểu thức tọa độ của phép biến hình F, ta xác định được ảnh của các điểm A; B và C là :
A'(3;1); B'( 3; 3) và C'( 3; 7)
Vì
nên 3 điểm A'; B'; C' thẳng hàng
Do đó, không tồn tại trọng tâm tam giác A'B'C'
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng Oxy, cho đường thẳng (d): 4x + y – 7 = 0. Đường thẳng đối xứng với (d) qua trục tung có phương trình:
Câu 2:
Trong mp Oxy cho đường thẳng (d): x – 2y – 3 = 0. Viết phương trình (d1) là ảnh của (d) qua phép đối xứng qua
Câu 3:
Trong mp Oxy, cho đường tròn (C): – 4x + 2y + 1 = 0. Phương trình của đường tròn (C’) đối xứng với (C) qua trục hoành
Câu 4:
Cho đường thẳng (d): –3x – y + 5 = 0, đường thẳng (d’): –3x – y – 2 = 0. Tìm tọa độ vectơ có giá vuông góc với đường thằng (d) để (d’) là ảnh của (d) qua
Câu 6:
Trong mp Oxy , cho đường thẳng :2x – 3y + 1 = 0. Ảnh của nó qua với là
Câu 7:
Trong mp Oxy, cho đường tròn. Ảnh (C’) của (C) qua phép tịnh tiến theo vectơ là
Câu 8:
Trong mp Oxy, cho d: x – 3y + 1 = 0. Để phép tịnh tiến theo vectơ biến d thành chính nó thì phải là vectơ nào trong các vectơ dưới đây?
Câu 9:
Trong mp Oxy, cho đường tròn . Ảnh (C’) của (C). qua phép tịnh tiến theo vectơ là
Câu 10:
Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) : x2 + y2 – 2x + 2y + 1 = 0
Phương trình đường tròn (C’) đối xứng (C) qua trục tung là:
Câu 11:
Cho đt (d): x – 4y + 2 = 0. Lấy đối xứng của (d) qua Oy ta được đường thẳng có phương trình:
Câu 13:
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có tâm I(0;−1) , bán kính R = 2. Ảnh của (C) qua việc thực hiện liên tiếp phép quay tâm O góc quay 180và phép vị tự tâm O tỉ số 2
Câu 14:
Cho đt (d): x – 4y + 2 = 0. Lấy đối xứng của (d) qua Ox ta được đường thẳng có phương trình
Câu 15:
Cho A(2;3). Hỏi A là ảnh của điểm nào trong các điểm sau qua phép tịnh tiến theo vectơ