Câu hỏi:
08/01/2025 270Cho parabol (P): và đường thẳng d: y = (m + 2)x – m – 1. Tìm m để d cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung
A. m < −1
B. m < −2
C. m > −1
D. −2 < m < −1
Trả lời:
Đáp án đúng: A
*Lời giải:
Phương trình hoành độ giao điểm của d và (P): = (m + 2)x – m – 1
↔ − (m + 2)x + m + 1 = 0 (1)
(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0
↔ m < −1
Vậy m < −1
*Phương pháp giải:
d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0
*Lý thuyết nắm thêm
- Giá trị hàm số tại một điểm: Một điểm M thuộc đồ thị hàm số y = a (a ≠ 0) khi và chỉ khi . Khi đó, là giá trị hàm số tại điểm .
- Sự đồng biến và nghịch biến của hàm số:
+) Nếu a > 0 thì hàm số nghịch biến khi x < 0 và đồng biến khi x > 0
+) Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0
B. Các dạng bài tập và ví dụ minh họa
Dạng 1: Tính giá trị hàm số tại một điểm cho trước
Một điểm M thuộc đồ thị hàm số y = a (a ≠ 0) khi và chỉ khi . Khi đó, là giá trị hàm số tại điểm .
Dạng 2: Xét tính đồng biến, nghịch biến của hàm số
So sánh hệ số a với số 0, ta có:
Nếu a > 0 thì hàm số nghịch biến khi x < 0 và đồng biến khi x > 0
Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0
Dạng 3: Các bài toán liên quan đến tham số m
Sử dụng các kiến thức về hàm số y = a (a ≠ 0) để biện luận tìm điều kiện của m thỏa mãn yêu cầu đề bài.
Một điểm M thuộc đồ thị hàm số y = a (a ≠ 0) khi và chỉ khi . Khi đó, là giá trị hàm số tại điểm .
Nếu a > 0 thì hàm số nghịch biến khi x < 0 và đồng biến khi x > 0
Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0
Xem thêm các bài viết liên quan hay, chi tiết:
Lý thuyết Hàm số y = ax^2 (a ≠ 0) (mới 2024 + Bài Tập) – Toán 9
50 bài tập về Các dạng bài tập Hàm số y = a.x^2 (có đáp án 2024) - Toán 9
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho parabol (P): và d: y = 4x + 5. Tìm tọa độ giao điểm A, B của (P) và d:
Câu 2:
Cho đường thẳng d: y = −3x + 1 và parabol (P): (m ≠ 0) . Tìm m để d và (P) cắt nhau tại hai điểm A và B phân biệt và cùng nằm về một phía đối với trục tung.
Câu 3:
Tìm tham số m để đường thẳng d: y = mx + m + 1 và parabol (P): cắt nhau tại hai điểm phân biệt nằm bên trái trục tung.
Câu 4:
Tìm tham số m để đường thẳng d: y = (m – 2)x + 3m và parabol (P): cắt nhau tại hai điểm phân biệt nằm bên trái trục tung
Câu 5:
Tìm tham số m để đường thẳng d: y = 2x – 3m – 1 tiếp xúc với parabol (P):
Câu 6:
Cho parabol (P): và d: y = 2x + 3. Tìm tọa độ giao điểm A, B của (P) và d:
Câu 7:
Có bao nhiêu giá trị của tham số m để đường thẳng d: và parabol (P): cắt nhau tại hai điểm phân biệt có hoành thỏa mãn
Câu 8:
Tìm m để parabol (P): cắt đường thẳng d: y = (m – 1) x + – 16 tại hai điểm phân biệt nằm bên trái trục tung.
Câu 9:
Tìm giá trị của tham số m để đường thẳng d: và parabol (P): cắt nhau tại hai điểm phân biệt có hoành độ thỏa mãn
Câu 10:
Có bao nhiêu giá trị nguyên của tham số m để đường thẳng d: y = 2mx – 2m + 3 và parabol (P) cắt nhau tại hai điểm phân biệt có tọa độ thỏa mãn
Câu 12:
Tìm tham số m để đường thẳng d: y = mx + 2 cắt parabol (P): tại hai điểm phân biệt
Câu 13:
Cho parabol (P): (a 0) đi qua điểm A (−2; 4) và tiếp xúc với đồ thị (d) của hàm số y = 2 (m – 1)x – (m – 1). Tọa độ tiếp điểm là:
Câu 14:
Có bao nhiêu giá trị của tham số m để đường thẳng d: y = 5x – m − 4 và parabol (P): cắt nhau tại hai điểm phân biệt có hoành độ thỏa mãn
Câu 15:
Có bao nhiêu giá trị của tham số m để đường thẳng d: y = 2mx + 4 và parabol (P): cắt nhau tại hai điểm phân biệt có hoành độ thỏa mãn