Câu hỏi:
22/07/2024 279Cho hình tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều cạnh tương ứng thành các phần bằng nhau. Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu. Lấy ra từ S một tam giác, xác suất để mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho bằng
Trả lời:
Chọn D
Cách 1:
Gọi các điểm được đánh dấu để chia đều các cạnh của tứ diện đều ABCD như hình vẽ.
+ Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.
Số phần tử của S là số cách chọn ra 3 điểm không thẳng hàng trong số 18 điểm đã cho.
Chọn ra 3 điểm trong 18 điểm trên: có cách.
Chọn ra 3 điểm thẳng hàng trong 18 điểm trên có 6. = 6 cách.
Suy ra số tam giác thỏa mãn là - 6 = 810
+ Gọi T là tập hợp các tam giác lấy từ ABCD sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện ABCD.
- Chọn 1 cạnh của tứ diện để mặt phẳng chứa tam giác chỉ song song với đúng cạnh đó: có cách.
Xét các tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD, suy ra tam giác đó phải có một cạnh song song với BD.
- Có 6 cách chọn cạnh song song với BD là
- Giả sử ta chọn cạnh là cạnh của tam giác. Cần chọn đỉnh thứ 3 của tam giác trong 16 điểm còn lại.
Do (ABD) mà mặt phẳng chứa tam giác song song với BD nên đỉnh thứ 3 không thể là 7 điểm còn lại nằm trong mp(ABD).
Do mặt phẳng chứa tam giác chỉ song song với BD nên đỉnh thứ 3 không được trùng với một trong ba điểm . Vậy đỉnh thứ 3 chỉ được chọn trong 16 -7 - 3 = 6 điểm còn lại.
Suy ra có 6 tam giác có 1 cạnh là và mặt phẳng chứa nó chỉ song song với BD.
Vậy số tam giác mà mặt phẳng chứa nó chỉ song song với cạnh BD là: 6.6 = 36.
Tương tự cho các trường hợp khác, ta có số tam giác mà mặt phẳng chứa nó chỉ song song với đúng một cạnh của tứ diện ABCD là: 36.6 = 216.
Vậy xác suất cần tìm là
Cách 2: Lưu Thêm
+) Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu.
Chọn ra 3 điểm trong 18 điểm trên: có cách.
Trong số đó, có 6 cách chọn ra 3 điểm thẳng hàng trên các cạnh.
Suy ra n(S) = - 6 = 810
+) Xét phép thử: “Lấy ngẫu nhiên một phần thử thuộc S”. Ta có
+) Gọi T là biến cố: “Mặt phẳng chứa tam giác được chọn song song với đúng một cạnh của tứ diện đã cho”.
Chọn một cạnh của tứ diện: 6 cách, (giả sử chọn AB).
Chọn đường thẳng song song với AB: 6 cách, (giả sử chọn PQ).
Chọn đỉnh thứ 3: 6 cách, (M, N, E, K, F, I).
Suy ra n(T) = 6.6.6 = 216
Vậy
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tổ 1 của lớp 10A có 10 học sinh gồm 6 nam và 4 nữ. Cần chọn ra 2 bạn trong tổ 1 để phân công trực nhật. Xác suất để chọn được 1 bạn nam và 1 bạn nữ là
Câu 2:
Xếp ngẫu nhiên 4 quyển sách Toán khác nhau và 4 quyển sách Hóa giống nhau vào một giá sách nằm ngang có 10 ô trống, mỗi quyển sách được xếp vào một ô. Xác suất để 4 quyển sách Toán xếp cạnh nhau và 4 quyển sách Hóa xếp cạnh nhau bằng
Câu 3:
Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh khối 10, 5 học sinh khối 11 và 3 học sinh khối 12 thành một hàng ngang. Xác suất để không có học sinh khối 11 nào xếp giữa hai học sinh khối 10 bằng
Câu 4:
Có một dãy ghế gồm 6 ghế. Xếp ngẫu nhiên 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B, 2 học sinh lớp C ngồi vào dãy ghế sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để không có học sinh lớp C nào ngồi cạnh nhau bằng
Câu 5:
Một hộp đựng 7 viên bi đỏ đánh số từ 1 đến 7 và 6 viên bi xanh đánh số từ 1 đến 6. Hỏi có bao nhiêu cách chọn hai viên bi từ hộp đó sao cho chúng khác màu và khác số?
Câu 6:
Trên kệ sách có 10 cuốn sách Toán và 5 cuốn sách Văn. Người ta lấy ngẫu nhiên lần lượt 3 cuốn sách mà không để lại. Tính xác suất để được hai cuốn sách đầu là Toán, cuốn thứ ba là Văn.
Câu 7:
Cho tập hợp A có 20 phần tử. Có bao nhiêu tập con của A khác rỗng và số phần tử là số chẵn?
Câu 8:
Với các chữ “LẬP”, “HỌC”, “MAI”, “NGÀY”, “NGHIỆP”, “TẬP”, “VÌ”, mỗi chữ được viết lên một tấm bìa, sau đó người ta trải ra ngẫu nhiên. Xác suất để được dòng chữ “HỌC TẬP VÌ NGÀY MAI LẬP NGHIỆP” bằng:
Câu 9:
Gọi S là tập hợp các số tự nhiên, mỗi số không có quá 3 chữ số và tổng các chữ số bằng 9. Lấy ngẫu nhiên một số từ . Tính xác suất để số lấy ra có chữ số hàng trăm là 4.
Câu 10:
Một hộp có 10 quả cầu xanh, 5 quả cầu đỏ. Lấy ngẫu nhiên 5 quả từ hộp đó. Xác suất để được 5 quả có đủ hai màu là
Câu 11:
Cho tập hợp S = {1;2;3;4;5;6;7;8;9}. Chọn ngẫu nhiên ba số từ tập S. Tính xác suất của biến cố trong ba số được chọn ra không chứa hai số nguyên liên tiếp nào.
Câu 12:
Một tổ học sinh có 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 2 người. Tính xác suất sao cho 2 người được chọn đều là nữ.
Câu 14:
Gieo một con súc sắc cân đối và đồng chất. Giả sử súc sắc xuất hiện mặt b chấm. Xác suất để phương trình + 2bx + 4 = 0 có nghiệm là
Câu 15:
Một tổ có 5 học sinh nữ và 6 học sinh nam. Xếp ngẫu nhiên các học sinh trên thành hàng ngang để chụp ảnh. Tính xác suất để không có hai học sinh nữ nào đứng cạnh nhau.