Câu hỏi:
20/07/2024 196
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.
a) Chứng minh rằng IK // (BCC'B').
b) Chứng minh rằng (AGK) // (A'IC).
c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính .
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.
a) Chứng minh rằng IK // (BCC'B').
b) Chứng minh rằng (AGK) // (A'IC).
c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính .
Trả lời:
a) Gọi M, N lần lượt là trung điểm của cạnh B'C', BB'.
Do I, K lần lượt là trọng tâm của các tam giác A'B'C' và A'B'B nên .
Suy ra IK // MN. Mà MN ⊂ (BCC'B') nên IK // (BCC'B').
b) Gọi P là trung điểm của cạnh BC.
Khi đó, mặt phẳng (AGK) cũng là mặt phẳng (AB'P), mặt phẳng (A'IC) cũng là mặt phẳng (A'MC).
Ta có B'P // MC (B'MCP là hình bình hành) nên B'P // (A'MC)
AP // A'M (APMA' là hình bình hành) nên AP // (A'MC).
Từ đó, suy ra (AB'P) // (A'MC) hay (AGK) // (A'IC).
c) Với K là trọng tâm của tam giác A'BB', ta suy ra nên .
Ta có đường thẳng B'A cắt ba mặt phẳng song song (A'B'C'), (α), (ABC) lần lượt tại B', K, A; đường thẳng A'C cũng cắt ba mặt phẳng trên theo thứ tự tại A', L, C.
Áp dụng định lí Thalés trong không gian, ta có: .
Suy ra .
Vậy .
a) Gọi M, N lần lượt là trung điểm của cạnh B'C', BB'.
Do I, K lần lượt là trọng tâm của các tam giác A'B'C' và A'B'B nên .
Suy ra IK // MN. Mà MN ⊂ (BCC'B') nên IK // (BCC'B').
b) Gọi P là trung điểm của cạnh BC.
Khi đó, mặt phẳng (AGK) cũng là mặt phẳng (AB'P), mặt phẳng (A'IC) cũng là mặt phẳng (A'MC).
Ta có B'P // MC (B'MCP là hình bình hành) nên B'P // (A'MC)
AP // A'M (APMA' là hình bình hành) nên AP // (A'MC).
Từ đó, suy ra (AB'P) // (A'MC) hay (AGK) // (A'IC).
c) Với K là trọng tâm của tam giác A'BB', ta suy ra nên .
Ta có đường thẳng B'A cắt ba mặt phẳng song song (A'B'C'), (α), (ABC) lần lượt tại B', K, A; đường thẳng A'C cũng cắt ba mặt phẳng trên theo thứ tự tại A', L, C.
Áp dụng định lí Thalés trong không gian, ta có: .
Suy ra .
Vậy .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây là sai?
A. Các mặt của hình hộp là các hình bình hành.
B. Hai mặt phẳng lần lượt chứa hai mặt đối diện của hình hộp song song với nhau.
C. Các đoạn thẳng AC', A'C, BD', B'D bằng nhau.
D. Các đường thẳng AC', A'C, BD', B'D đồng quy.
Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây là sai?
A. Các mặt của hình hộp là các hình bình hành.
B. Hai mặt phẳng lần lượt chứa hai mặt đối diện của hình hộp song song với nhau.
C. Các đoạn thẳng AC', A'C, BD', B'D bằng nhau.
D. Các đường thẳng AC', A'C, BD', B'D đồng quy.
Câu 2:
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của A'B', B'C'. Gọi d là giao tuyến của hai mặt phẳng (BMN) và (ACC'A'). Khẳng định nào sau đây là đúng?
A. d // AA'.
B. d // BC.
C. d // A'B'.
D. d // A'C'.
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của A'B', B'C'. Gọi d là giao tuyến của hai mặt phẳng (BMN) và (ACC'A'). Khẳng định nào sau đây là đúng?
A. d // AA'.
B. d // BC.
C. d // A'B'.
D. d // A'C'.
Câu 3:
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Khẳng định nào sau đây là đúng?
A. (A'MN) // (ACC').
B. (A'BN) // (AC'M).
C. C'M // (A'B'B).
D. BN // (ACC'A').
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Khẳng định nào sau đây là đúng?
A. (A'MN) // (ACC').
B. (A'BN) // (AC'M).
C. C'M // (A'B'B).
D. BN // (ACC'A').
Câu 4:
Phần trong của một bể đựng nước được xây có dạng hình hộp như Hình 38. Để xác định tỉ số của độ cao mực nước trong bể với chiều cao của lòng bể, bạn Minh làm như sau: “Lấy một thanh thước thẳng đủ dài cắm vào bể sao cho một đầu chạm đáy bể và để thước tựa vào mép dưới của thành miệng bể, đánh dấu điểm tựa. Sau đó rút thước lên, tính tỉ số độ dài của phần thước chìm trong nước và độ dài của phần thước từ điểm được đánh dấu đến điểm đầu chạm đáy bể. Tỉ số đó chính bằng tỉ số của độ cao mực nước trong bể với chiều cao của lòng bể”. Bạn Minh làm có đúng không? Vì sao?
Phần trong của một bể đựng nước được xây có dạng hình hộp như Hình 38. Để xác định tỉ số của độ cao mực nước trong bể với chiều cao của lòng bể, bạn Minh làm như sau: “Lấy một thanh thước thẳng đủ dài cắm vào bể sao cho một đầu chạm đáy bể và để thước tựa vào mép dưới của thành miệng bể, đánh dấu điểm tựa. Sau đó rút thước lên, tính tỉ số độ dài của phần thước chìm trong nước và độ dài của phần thước từ điểm được đánh dấu đến điểm đầu chạm đáy bể. Tỉ số đó chính bằng tỉ số của độ cao mực nước trong bể với chiều cao của lòng bể”. Bạn Minh làm có đúng không? Vì sao?
Câu 5:
Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (BA'C') song song với mặt phẳng nào dưới đây?
A. (ACD).
B. (ADD').
C. (DCD').
D. (AD'C).
Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (BA'C') song song với mặt phẳng nào dưới đây?
A. (ACD).
B. (ADD').
C. (DCD').
D. (AD'C).
Câu 6:
Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CC', C'D', D'A', AA'. Chứng minh rằng:
a) Sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.
b) Các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.
Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CC', C'D', D'A', AA'. Chứng minh rằng:
a) Sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.
b) Các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.
Câu 7:
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M là trung điểm của A'C'.
a) Chứng minh rằng A'B // (B'CM).
b) Xác định giao tuyến d của hai mặt phẳng (ABC) và (A'BC').
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M là trung điểm của A'C'.
a) Chứng minh rằng A'B // (B'CM).
b) Xác định giao tuyến d của hai mặt phẳng (ABC) và (A'BC').
Câu 8:
Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh.
Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh.