Trang chủ Lớp 11 Toán Giải SBT Toán 11 Cánh diều Bài 5. Hình lăng trụ và hình hộp

Giải SBT Toán 11 Cánh diều Bài 5. Hình lăng trụ và hình hộp

Giải SBT Toán 11 Cánh diều Bài 5. Hình lăng trụ và hình hộp

  • 55 lượt thi

  • 10 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 2:

10/07/2024

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Khẳng định nào sau đây là đúng?

A. (A'MN) // (ACC').

B. (A'BN) // (AC'M).

C. C'M // (A'B'B).

D. BN // (ACC'A').

Xem đáp án

Đáp án đúng là: B

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Khẳng định nào sau đây là đúng?  A. (A'MN) // (ACC').  B. (A'BN) // (AC'M).  C. C'M // (A'B'B).  D. BN // (ACC'A').  (ảnh 1)

+ Vì A, C, C', A' đồng phẳng nên A' (ACC'), mà A' (A'MN) nên hai mặt phẳng (A'MN) và (ACC') không thể song song. Do đó đáp án A sai.

+ Trong mặt phẳng (BCC'B'), hai đường thẳng C'M và BB' cắt nhau nên C'M không thể song song với mặt phẳng (A'B'B). Do đó đáp án C sai.

+ Trong hình bình hành BCC'B' có M, N lần lượt là trung điểm của BC, B'C' nên ta chứng minh được MN // BB' và MN = BB'.

Mà AA' // BB' và AA' = BB' nên MN // AA' và MN = AA'.

Suy ra AMNA' là hình bình hành, do đó AM // A'N.

Mà A'N (A'BN) nên AM // (A'BN). (1)

Ta cũng chứng minh được BMC'N là hình bình hành nên C'M // BN.

Mà BN (A'BN) nên C'M // (A'BN). (2)

Từ (1) và (2) suy ra (A'BN) // (AC'M). Vậy đáp án B đúng.


Câu 4:

21/07/2024

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của A'B', B'C'. Gọi d là giao tuyến của hai mặt phẳng (BMN) và (ACC'A'). Khẳng định nào sau đây là đúng?

A. d // AA'.

B. d // BC.

C. d // A'B'.

D. d // A'C'.

Xem đáp án

Đáp án đúng là: D

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của A'B', B'C'. Gọi d là giao tuyến của hai mặt phẳng (BMN) và (ACC'A'). Khẳng định nào sau đây là đúng?  A. d // AA'. B. d // BC.  C. d // A'B'. D. d // A'C'.  (ảnh 1)

M, N lần lượt là trung điểm của A'B', B'C' nên MN là đường trung bình của tam giác A'B'C', suy ra MN // A'C'.

Trong mặt phẳng (ABB'A'), gọi D là giao điểm của AA' và BM.

Vì AA' (ACC'A') nên D (ACC'A'), BM (BMN) nên D (BMN).

Khi đó, hai mặt phẳng (BMN), (ACC'A') có điểm chung là D và lần lượt chứa hai đường thẳng MN và A'C' song song với nhau nên giao tuyến của chúng là đường thẳng d đi qua điểm D và song song với MN, A'C'.


Câu 5:

04/07/2024

Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (BA'C') song song với mặt phẳng nào dưới đây?

A. (ACD).

B. (ADD').

C. (DCD').

D. (AD'C).

Xem đáp án

Đáp án đúng là: D

Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (BA'C') song song với mặt phẳng nào dưới đây?  A. (ACD).  B. (ADD').  C. (DCD'). D. (AD'C).  (ảnh 1)

Do AA'B'B và CDD'C là các hình bình hành nên AB // C'D' và AB = C'D' (cùng song song và bằng CD).

Suy ra ABC'D' là hình bình hành. Do đó, AD' // BC'.

Mà BC' (BA'C') nên AD' // (BA'C'). (1)

Tương tự, A'BCD' cũng là hình bình hành nên A'B // CD'.

Mà A'B (BA'C') nên CD' // (BA'C'). (2)

Từ (1) và (2) suy ra (AD'C) // (BA'C').


Câu 6:

12/07/2024

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M là trung điểm của A'C'.

a) Chứng minh rằng A'B // (B'CM).

b) Xác định giao tuyến d của hai mặt phẳng (ABC) và (A'BC').

Xem đáp án
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M là trung điểm của A'C'.  a) Chứng minh rằng A'B // (B'CM).  b) Xác định giao tuyến d của hai mặt phẳng (ABC) và (A'BC').  (ảnh 1)

a) Gọi I là giao điểm của BC và B'C.

Do tứ giác BCC'B' là hình bình hành nên I là trung điểm của BC'.

Do đó MI là đường trung bình của tam giác A'C'B, suy ra MI // A'B.

Mặt khác, MI (B'CM) nên A'B // (B'CM).

b) Hai mặt phẳng (ABC) và (A'BC') có điểm chung là B và lần lượt chứa hai đường thẳng song song là AC, A'C' nên giao tuyến của chúng là đường thẳng d đi qua B và song song với AC.


Câu 7:

19/07/2024

Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CC', C'D', D'A', AA'. Chứng minh rằng:

a) Sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.

b) Các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.

Xem đáp án
Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CC', C'D', D'A', AA'. Chứng minh rằng:  a) Sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.  b) Các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.  (ảnh 1)

a) Ta có S và P lần lượt là trung điểm của AA' và CC'.

Suy ra AS=12AA';  CP=12AA'.

Mà AA' = CC' và AA' // CC' (do ABCD.A'B'C'D' là hình hộp)

Nên AS = CP và AS // CP. Do đó, tứ giác ASPC là hình bình hành.

Suy ra AC // SP.

Mặt khác MN // AC (do MN là đường trung bình của tam giác ABC).

Khi đó, MN // SP.

Vậy M, N, P, S cùng thuộc một mặt phẳng.

Ta cũng chứng minh được PQ // CD', CD' // BA', BA' // MS nên PQ // MS.

Do đó Q (MNPS).

Tương tự ta có QR // MN nên R (MNPS).

Vậy sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.

b) Gọi O là giao điểm của các đường chéo hình hộp ABCD.A'B'C'D'.

Khi đó, O là trung điểm của các đường chéo BD', B'D, AC', A'C.

Ta có tứ giác BND'R là hình bình hành, nên hai đường chéo BD', NR cắt nhau tại trung điểm O của mỗi đường.

Tương tự, ta chứng minh được QM, PS đều nhận O là trung điểm.

Vậy các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.


Câu 8:

20/07/2024

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.

a) Chứng minh rằng IK // (BCC'B').

b) Chứng minh rằng (AGK) // (A'IC).

c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính LA'LC.

Xem đáp án
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.  a) Chứng minh rằng IK // (BCC'B').  b) Chứng minh rằng (AGK) // (A'IC).  c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính  . (ảnh 1)

a) Gọi M, N lần lượt là trung điểm của cạnh B'C', BB'.

Do I, K lần lượt là trọng tâm của các tam giác A'B'C' và A'B'B nên A'IA'M=A'KA'N=23.

Suy ra IK // MN. Mà MN ⊂ (BCC'B') nên IK // (BCC'B').

b) Gọi P là trung điểm của cạnh BC.

Khi đó, mặt phẳng (AGK) cũng là mặt phẳng (AB'P), mặt phẳng (A'IC) cũng là mặt phẳng (A'MC). 

Ta có B'P // MC (B'MCP là hình bình hành) nên B'P // (A'MC)

AP // A'M (APMA' là hình bình hành) nên AP // (A'MC).

Từ đó, suy ra (AB'P) // (A'MC) hay (AGK) // (A'IC).

c) Với K là trọng tâm của tam giác A'BB', ta suy ra B'KB'A=13 nên B'KKA=12.

Ta có đường thẳng B'A cắt ba mặt phẳng song song (A'B'C'), (α), (ABC) lần lượt tại B', K, A; đường thẳng A'C cũng cắt ba mặt phẳng trên theo thứ tự tại A', L, C.

Áp dụng định lí Thalés trong không gian, ta có: B'KA'L=KALC=AB'CA'.

Suy ra A'LLC=B'KKA=12.

Vậy LA'LC=12.


Câu 9:

02/07/2024

Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh.

Xem đáp án

Trước hết ta chứng minh một kết quả trong hình học phẳng: Trong hình bình hành, tổng bình phương của hai đường chéo bằng tổng bình phương tất cả các cạnh.

Xét hình bình hành MNPQ:

Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh.  (ảnh 1)

Áp dụng định lí côsin trong các tam giác MPQ và QPN, ta có:

MP2 = QM2 + QP2 – 2QM . QP . cosMQP^

QN2 = PQ2 + PN2 – 2PQ . PN . cosQPN^

Do QM = PN và cosMQP^=cosQPN^ (do hai góc bù nhau) nên ta có:

MP2 + QN2 = 2(QM2 + QP2).

Xét hình hộp ABCD.A'B'C'D':

Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh.  (ảnh 2)

Áp dụng kết quả trên cho hai hình bình hành AA'C'C và BB'D'D ta được:

AC'2 + A'C2 = 2(AA'2 + A'C'2)

BD'2 + B'D2 = 2(BB'2 + B'D'2)

Suy ra AC'2 + A'C2 + BD'2 + B'D2 = 4AA'2 + 2(A'C'2 + B'D'2)    (do AA' = BB').

Mặt khác, trong hình bình hành A'B'C'D', ta có: A'C'2 + B'D'2 = 2(A'B'2 + A'D'2).

Vậy AC'2 + A'C2 + BD'2 + B'D2 = 4AA'2 + 4A'B'2 + 4A'D'2.

Từ đó suy ra điều phải chứng minh.


Bắt đầu thi ngay