Câu hỏi:
19/07/2024 80
Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CC', C'D', D'A', AA'. Chứng minh rằng:
a) Sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.
b) Các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.
Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CC', C'D', D'A', AA'. Chứng minh rằng:
a) Sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.
b) Các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.
Trả lời:
a) Ta có S và P lần lượt là trung điểm của AA' và CC'.
Suy ra .
Mà AA' = CC' và AA' // CC' (do ABCD.A'B'C'D' là hình hộp)
Nên AS = CP và AS // CP. Do đó, tứ giác ASPC là hình bình hành.
Suy ra AC // SP.
Mặt khác MN // AC (do MN là đường trung bình của tam giác ABC).
Khi đó, MN // SP.
Vậy M, N, P, S cùng thuộc một mặt phẳng.
Ta cũng chứng minh được PQ // CD', CD' // BA', BA' // MS nên PQ // MS.
Do đó Q ∈ (MNPS).
Tương tự ta có QR // MN nên R ∈ (MNPS).
Vậy sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.
b) Gọi O là giao điểm của các đường chéo hình hộp ABCD.A'B'C'D'.
Khi đó, O là trung điểm của các đường chéo BD', B'D, AC', A'C.
Ta có tứ giác BND'R là hình bình hành, nên hai đường chéo BD', NR cắt nhau tại trung điểm O của mỗi đường.
Tương tự, ta chứng minh được QM, PS đều nhận O là trung điểm.
Vậy các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.
a) Ta có S và P lần lượt là trung điểm của AA' và CC'.
Suy ra .
Mà AA' = CC' và AA' // CC' (do ABCD.A'B'C'D' là hình hộp)
Nên AS = CP và AS // CP. Do đó, tứ giác ASPC là hình bình hành.
Suy ra AC // SP.
Mặt khác MN // AC (do MN là đường trung bình của tam giác ABC).
Khi đó, MN // SP.
Vậy M, N, P, S cùng thuộc một mặt phẳng.
Ta cũng chứng minh được PQ // CD', CD' // BA', BA' // MS nên PQ // MS.
Do đó Q ∈ (MNPS).
Tương tự ta có QR // MN nên R ∈ (MNPS).
Vậy sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.
b) Gọi O là giao điểm của các đường chéo hình hộp ABCD.A'B'C'D'.
Khi đó, O là trung điểm của các đường chéo BD', B'D, AC', A'C.
Ta có tứ giác BND'R là hình bình hành, nên hai đường chéo BD', NR cắt nhau tại trung điểm O của mỗi đường.
Tương tự, ta chứng minh được QM, PS đều nhận O là trung điểm.
Vậy các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây là sai?
A. Các mặt của hình hộp là các hình bình hành.
B. Hai mặt phẳng lần lượt chứa hai mặt đối diện của hình hộp song song với nhau.
C. Các đoạn thẳng AC', A'C, BD', B'D bằng nhau.
D. Các đường thẳng AC', A'C, BD', B'D đồng quy.
Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây là sai?
A. Các mặt của hình hộp là các hình bình hành.
B. Hai mặt phẳng lần lượt chứa hai mặt đối diện của hình hộp song song với nhau.
C. Các đoạn thẳng AC', A'C, BD', B'D bằng nhau.
D. Các đường thẳng AC', A'C, BD', B'D đồng quy.
Câu 2:
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của A'B', B'C'. Gọi d là giao tuyến của hai mặt phẳng (BMN) và (ACC'A'). Khẳng định nào sau đây là đúng?
A. d // AA'.
B. d // BC.
C. d // A'B'.
D. d // A'C'.
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của A'B', B'C'. Gọi d là giao tuyến của hai mặt phẳng (BMN) và (ACC'A'). Khẳng định nào sau đây là đúng?
A. d // AA'.
B. d // BC.
C. d // A'B'.
D. d // A'C'.
Câu 3:
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.
a) Chứng minh rằng IK // (BCC'B').
b) Chứng minh rằng (AGK) // (A'IC).
c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính .
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.
a) Chứng minh rằng IK // (BCC'B').
b) Chứng minh rằng (AGK) // (A'IC).
c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính .
Câu 4:
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Khẳng định nào sau đây là đúng?
A. (A'MN) // (ACC').
B. (A'BN) // (AC'M).
C. C'M // (A'B'B).
D. BN // (ACC'A').
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Khẳng định nào sau đây là đúng?
A. (A'MN) // (ACC').
B. (A'BN) // (AC'M).
C. C'M // (A'B'B).
D. BN // (ACC'A').
Câu 5:
Phần trong của một bể đựng nước được xây có dạng hình hộp như Hình 38. Để xác định tỉ số của độ cao mực nước trong bể với chiều cao của lòng bể, bạn Minh làm như sau: “Lấy một thanh thước thẳng đủ dài cắm vào bể sao cho một đầu chạm đáy bể và để thước tựa vào mép dưới của thành miệng bể, đánh dấu điểm tựa. Sau đó rút thước lên, tính tỉ số độ dài của phần thước chìm trong nước và độ dài của phần thước từ điểm được đánh dấu đến điểm đầu chạm đáy bể. Tỉ số đó chính bằng tỉ số của độ cao mực nước trong bể với chiều cao của lòng bể”. Bạn Minh làm có đúng không? Vì sao?
Phần trong của một bể đựng nước được xây có dạng hình hộp như Hình 38. Để xác định tỉ số của độ cao mực nước trong bể với chiều cao của lòng bể, bạn Minh làm như sau: “Lấy một thanh thước thẳng đủ dài cắm vào bể sao cho một đầu chạm đáy bể và để thước tựa vào mép dưới của thành miệng bể, đánh dấu điểm tựa. Sau đó rút thước lên, tính tỉ số độ dài của phần thước chìm trong nước và độ dài của phần thước từ điểm được đánh dấu đến điểm đầu chạm đáy bể. Tỉ số đó chính bằng tỉ số của độ cao mực nước trong bể với chiều cao của lòng bể”. Bạn Minh làm có đúng không? Vì sao?
Câu 6:
Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (BA'C') song song với mặt phẳng nào dưới đây?
A. (ACD).
B. (ADD').
C. (DCD').
D. (AD'C).
Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (BA'C') song song với mặt phẳng nào dưới đây?
A. (ACD).
B. (ADD').
C. (DCD').
D. (AD'C).
Câu 7:
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M là trung điểm của A'C'.
a) Chứng minh rằng A'B // (B'CM).
b) Xác định giao tuyến d của hai mặt phẳng (ABC) và (A'BC').
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M là trung điểm của A'C'.
a) Chứng minh rằng A'B // (B'CM).
b) Xác định giao tuyến d của hai mặt phẳng (ABC) và (A'BC').
Câu 8:
Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh.
Chứng minh rằng trong một hình hộp, tổng bình phương của bốn đường chéo bằng tổng bình phương của tất cả các cạnh.