Câu hỏi:
26/12/2024 263Cho hình chữ nhật ABCD có AB = 8cm; AD = 6cm. Tính diện tích mặt cầu thu được khi quay nửa đường tròn ngoại tiếp hình chữ nhật ABCD quay quanh đường thẳng MN với M là trung điểm AD, N là trung điểm BC.
A. .
B. .
C. .
D. .
Trả lời:
Đáp án đúng là: B.
Lời giải
Gọi O là tâm của hình chữ nhật nên OA = OB = OC = OD nên O là tâm đường tròn ngoại tiếp hình chữ nhật ABCD. Khi đó bán kính đường tròn là R = OA =
Theo định lý Pytago ta có:
Khi quay nửa đường tròn ngoại tiếp hình chữ nhật ABCD quay quanh đường thẳng MN với M là trung điểm AD, N là trung điểm BC ta được một hình cầu tâm O bán kính R = 5cm
Diện tích mặt cầu là .
Chú ý: Một số em có thể nhớ nhầm công thức diện tích thành S = R2 dẫn đến ra kết quả D sai.
*Phương pháp giải:
Áp dụng pytago vào tam giác ADC tìm R
Sử dụng công thức tính diện tích mặt cầu
*Lý thuyết:
1. Công thức tính diện tích mặt cầu
- Cho mặt cầu (S) có bán kính r.
Khi đó diện tích mặt cầu
- Chú ý: Diện tích S của mặt cầu bán kính r bằng bốn lần diện tích hình tròn lớn của mặt cầu đó.
2. Công thức tính thể tích khối cầu
Khối cầu bán kính r có thể tích là V =
Xem thêm
Công thức tính diện tích mặt cầu, thể tích khối cầu chi tiết nhất
50 Bài tập Hình cầu, Diện tích mặt cầu và thể tích hình cầu Toán 9 mới nhất
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông cân tại A có cạnh góc vuông bằng a. Tính diện tích mặt cầu được tạo thành khi quay nửa đường tròn ngoại tiếp tam giác ABC một vòng quanh cạnh BC.
Câu 2:
Cho một hình cầu và hình trụ ngoại tiếp nó (đường kính đáy và chiều cao của hình trụ bằng nhau và bằng đường kính của hình cầu). Tính tỉ số giữa diện tích mặt cầu và diện tích xung quanh của hình trụ.
Câu 3:
Cho một tam giác đều ABC có cạnh AB = 8cm, đường cao AH. Khi đó thể tích hình cầu được tạo thành khi quay nửa đường tròn nội tiếp tam giác ABC một vòng quanh AH.
Câu 4:
Cho một tam giác đều ABC có cạnh AB = 12cm, đường cao AH. Khi đó thể tích hình cầu được tạo thành khi quay nửa đường tròn nội tiếp tam giác ABC một vòng quanh AH.
Câu 5:
Cho một hình cầu và một hình lập phương ngoại tiếp nó.Nếu diện tích toàn phần của hình lập phương là thì diện tích mặt cầu là:
Câu 6:
Cho một hình cầu nội tiếp trong hình trụ. Biết rằng đường kính đáy và chiều cao của hình trụ bằng nhau và bằng đường kính của hình cầu. Tính tỉ số giữa thể tích hình cầu và thể tích hình trụ.
Câu 7:
Cho hình chữ nhật ABCD có AB = 4cm; AD = 3cm. Tính diện tích mặt cầu thu được khi quay nửa đường tròn ngoại tiếp hình chữ nhật ABCD quay quanh đường thẳng MN với M là trung điểm AD, N là trung điểm BC.
Câu 8:
Cho một hình cầu và một hình lập phương ngoại tiếp nó. Tính tỉ số giữa diện tích mặt cầu và diện tích toàn phần của hình lập phương.
Câu 9:
Cho một hình cầu nội tiếp trong hình trụ. Biết rằng chiều cao của hình trụ bằng ba lần bán kính đáy bà bán kính đáy hình trụ bằng bán kính của hình cầu. Tính tỉ số giữa thể tích hình cầu và thể tích hình trụ.
Câu 10:
Cho một hình cầu và hình trụ ngoại tiếp nó (đường kính đáy và chiều cao của hình trụ bằng nhau và bằng đường kính của hình cầu). Tính tỉ số giữa diện tích mặt cầu và diện tích toàn phần của hình trụ.
Câu 11:
Cho tam giác ABC vuông cân tại A có cạnh góc vuông bằng 6cm. Tính diện tích mặt cầu được tạo thành khi quay nửa đường tròn ngoại tiếp tam giác ABC một vòng quanh cạnh BC.