Câu hỏi:
17/07/2024 114
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm các cạnh AB, CD, SA. Khẳng định nào sau đây là đúng?
A. (SBN) // (DAP).
B. (SBC) // (MPD).
C. (SBN) // (PMD).
D. (SDN) // (MAP).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm các cạnh AB, CD, SA. Khẳng định nào sau đây là đúng?
A. (SBN) // (DAP).
B. (SBC) // (MPD).
C. (SBN) // (PMD).
D. (SDN) // (MAP).
Trả lời:
Đáp án đúng là: C
+ Ta có, P ∈ SA nên mặt phẳng (DAP) chính là mặt phẳng (SAD).
Mà hai mặt phẳng (SAD) và (SBN) có điểm chung là S nên chúng không thể song song.
Vậy hai mặt phẳng (SBN) và (DAP) không song song với nhau.
Do đó, đáp án A sai.
+ Trong mặt phẳng (ABCD), hai đường thẳng MD và BC cắt nhau.
Vậy hai mặt phẳng (SBC) và (MPD) không thể song song.
Do đó, đáp án B sai.
+ Mặt phẳng (MAP) chính là mặt phẳng (SAB).
Hai mặt phẳng (SAB) và (SDN) có điểm chung là S.
Vậy hai mặt phẳng (MAP) và (SAB) không thể song song.
Do đó, đáp án D sai. Vậy đáp án C đúng. Ta chứng minh như sau:
+ Vì M, N lần lượt là trung điểm của AB, CD và AB = CD, AB // CD (do ABCD là hình bình hành) nên BM // ND và BM // ND. Do đó, BMDN là hình bình hành.
Suy ra MD // BN. Mà BN ⊂ (SBN) nên MD // (SBN).
Lại có MP là đường trung bình của tam giác SAB nên MP // SB.
Mà SB ⊂ (SBN) nên MP // (SBN).
Vì MD và MP cắt nhau trong mặt phẳng (MPD) nên (MPD) // (SBN).
Đáp án đúng là: C
+ Ta có, P ∈ SA nên mặt phẳng (DAP) chính là mặt phẳng (SAD).
Mà hai mặt phẳng (SAD) và (SBN) có điểm chung là S nên chúng không thể song song.
Vậy hai mặt phẳng (SBN) và (DAP) không song song với nhau.
Do đó, đáp án A sai.
+ Trong mặt phẳng (ABCD), hai đường thẳng MD và BC cắt nhau.
Vậy hai mặt phẳng (SBC) và (MPD) không thể song song.
Do đó, đáp án B sai.
+ Mặt phẳng (MAP) chính là mặt phẳng (SAB).
Hai mặt phẳng (SAB) và (SDN) có điểm chung là S.
Vậy hai mặt phẳng (MAP) và (SAB) không thể song song.
Do đó, đáp án D sai. Vậy đáp án C đúng. Ta chứng minh như sau:
+ Vì M, N lần lượt là trung điểm của AB, CD và AB = CD, AB // CD (do ABCD là hình bình hành) nên BM // ND và BM // ND. Do đó, BMDN là hình bình hành.
Suy ra MD // BN. Mà BN ⊂ (SBN) nên MD // (SBN).
Lại có MP là đường trung bình của tam giác SAB nên MP // SB.
Mà SB ⊂ (SBN) nên MP // (SBN).
Vì MD và MP cắt nhau trong mặt phẳng (MPD) nên (MPD) // (SBN).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng (P) cho tam giác ABC. Qua A, B, C lần lượt vẽ các tia Ax, By, Cz đôi một song song với nhau và không nằm trong mặt phẳng (P). Trên các tia Ax, By, Cz lần lượt lấy các điểm A', B', C' sao cho AA' = BB' = CC'. Chứng minh rằng (ABC) // (A'B'C').
Trong mặt phẳng (P) cho tam giác ABC. Qua A, B, C lần lượt vẽ các tia Ax, By, Cz đôi một song song với nhau và không nằm trong mặt phẳng (P). Trên các tia Ax, By, Cz lần lượt lấy các điểm A', B', C' sao cho AA' = BB' = CC'. Chứng minh rằng (ABC) // (A'B'C').
Câu 2:
Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Khẳng định nào sau đây là đúng?
A. (ADF) // (BCE).
B. AD // (BEF).
C. (ABC) // (DEF).
D. EC // (ABD).
Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Khẳng định nào sau đây là đúng?
A. (ADF) // (BCE).
B. AD // (BEF).
C. (ABC) // (DEF).
D. EC // (ABD).
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD. Gọi M là trọng tâm của tam giác SAD, N là điểm thuộc đoạn thẳng AC sao cho AN = AC, P là điểm thuộc đoạn thẳng CD sao cho DP = DC. Chứng minh rằng (MNP) // (SBC).
Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD. Gọi M là trọng tâm của tam giác SAD, N là điểm thuộc đoạn thẳng AC sao cho AN = AC, P là điểm thuộc đoạn thẳng CD sao cho DP = DC. Chứng minh rằng (MNP) // (SBC).
Câu 4:
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên các đường chéo AC, BF lần lượt lấy các điểm M, N sao cho . Qua M vẽ đường thẳng song song với AB cắt AD tại M', qua N vẽ đường thẳng song song với AB cắt AF tại N'.
a) Chứng minh rằng (MNN') // (CDE).
b) Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Mặt phẳng (P) cắt đường thẳng EF tại I. Tính , biết .
Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên các đường chéo AC, BF lần lượt lấy các điểm M, N sao cho . Qua M vẽ đường thẳng song song với AB cắt AD tại M', qua N vẽ đường thẳng song song với AB cắt AF tại N'.
a) Chứng minh rằng (MNN') // (CDE).
b) Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Mặt phẳng (P) cắt đường thẳng EF tại I. Tính , biết .
Câu 5:
Cho đường thẳng a song song với mặt phẳng (P). Có bao nhiêu mặt phẳng chứa a và song song với (P)?
A. 0.
B. 1.
C. 2.
D. Vô số.
Cho đường thẳng a song song với mặt phẳng (P). Có bao nhiêu mặt phẳng chứa a và song song với (P)?
A. 0.
B. 1.
C. 2.
D. Vô số.
Câu 6:
Cho mặt phẳng (P) song song với mặt phẳng (Q). Khẳng định nào sau đây là đúng?
A. Mọi đường thẳng nằm trong (P) đều song song với mọi đường thẳng nằm trong (Q).
B. (P) song song với mọi đường thẳng nằm trong (Q).
C. Nếu mặt phẳng (R) song song với mặt phẳng (P) thì mặt phẳng (R) song song với mặt phẳng (Q).
D. Nếu đường thẳng a song song với mặt phẳng (Q) thì đường thẳng a song song với mặt phẳng (P).
Cho mặt phẳng (P) song song với mặt phẳng (Q). Khẳng định nào sau đây là đúng?
A. Mọi đường thẳng nằm trong (P) đều song song với mọi đường thẳng nằm trong (Q).
B. (P) song song với mọi đường thẳng nằm trong (Q).
C. Nếu mặt phẳng (R) song song với mặt phẳng (P) thì mặt phẳng (R) song song với mặt phẳng (Q).
D. Nếu đường thẳng a song song với mặt phẳng (Q) thì đường thẳng a song song với mặt phẳng (P).
Câu 7:
Cho a, b là hai đường thẳng phân biệt cắt ba mặt phẳng song song (P), (Q), (R) lần lượt tại các điểm A, B, C và A', B', C'. Khẳng định nào sau đây là sai?
A. .
B. .
C. .
D. .
Cho a, b là hai đường thẳng phân biệt cắt ba mặt phẳng song song (P), (Q), (R) lần lượt tại các điểm A, B, C và A', B', C'. Khẳng định nào sau đây là sai?
A. .
B. .
C. .
D. .