Câu hỏi:

21/07/2024 89

Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Khẳng định nào sau đây là đúng?

A. (ADF) // (BCE).

B. AD // (BEF).

C. (ABC) // (DEF).

D. EC // (ABD).

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng phân biệt. Khẳng định nào sau đây là đúng?  A. (ADF) // (BCE).  B. AD // (BEF).  C. (ABC) // (DEF).  D. EC // (ABD).  (ảnh 1)

+ Ta có AF // BE (ABEF là hình bình hành), mà BE (BCE) nên AF // (BCE).

Lại có AD // BC (ABCD là hình bình hành), mà BC (BCE) nên AD // (BCE).

Mà AF và AD cắt nhau trong mặt phẳng (ADF) nên (ADF) // (BCE). Vậy đáp án A đúng.

+ Vì AD ∩ (BEF) = A nên đáp án B sai.

+ Vì (ABC) ∩ (DEF) = CD nên đáp án C sai.

+ Vì EC ∩ (ABD) = C nên đáp án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng (P) cho tam giác ABC. Qua A, B, C lần lượt vẽ các tia Ax, By, Cz đôi một song song với nhau và không nằm trong mặt phẳng (P). Trên các tia Ax, By, Cz lần lượt lấy các điểm A', B', C' sao cho AA' = BB' = CC'. Chứng minh rằng (ABC) // (A'B'C').

Xem đáp án » 13/07/2024 134

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P lần lượt là trung điểm các cạnh AB, CD, SA. Khẳng định nào sau đây là đúng?

A. (SBN) // (DAP).

B. (SBC) // (MPD).

C. (SBN) // (PMD).

D. (SDN) // (MAP).

Xem đáp án » 17/07/2024 114

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AD. Gọi M là trọng tâm của tam giác SAD, N là điểm thuộc đoạn thẳng AC sao cho AN = 13AC, P là điểm thuộc đoạn thẳng CD sao cho DP = 13DC. Chứng minh rằng (MNP) // (SBC).

Xem đáp án » 18/07/2024 78

Câu 4:

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Trên các đường chéo AC, BF lần lượt lấy các điểm M, N sao cho AMAC=BNBF. Qua M vẽ đường thẳng song song với AB cắt AD tại M', qua N vẽ đường thẳng song song với AB cắt AF tại N'.

a) Chứng minh rằng (MNN') // (CDE).

b) Gọi (P) là mặt phẳng đi qua M và song song với mặt phẳng (AFD). Mặt phẳng (P) cắt đường thẳng EF tại I. Tính FIFE, biết AMAC=13.

Xem đáp án » 15/07/2024 76

Câu 5:

Cho đường thẳng a song song với mặt phẳng (P). Có bao nhiêu mặt phẳng chứa a và song song với (P)?

A. 0.

B. 1.

C. 2.

D. Vô số.

Xem đáp án » 29/06/2024 68

Câu 6:

Cho mặt phẳng (P) song song với mặt phẳng (Q). Khẳng định nào sau đây là đúng?

A. Mọi đường thẳng nằm trong (P) đều song song với mọi đường thẳng nằm trong (Q).

B. (P) song song với mọi đường thẳng nằm trong (Q).

C. Nếu mặt phẳng (R) song song với mặt phẳng (P) thì mặt phẳng (R) song song với mặt phẳng (Q).

D. Nếu đường thẳng a song song với mặt phẳng (Q) thì đường thẳng a song song với mặt phẳng (P).

Xem đáp án » 23/07/2024 63

Câu 7:

Cho a, b là hai đường thẳng phân biệt cắt ba mặt phẳng song song (P), (Q), (R) lần lượt tại các điểm A, B, C và A', B', C'. Khẳng định nào sau đây là sai?

A. ABA'B'=BCB'C'=CAC'A'.

B. A'B'AB=B'C'BC=C'A'CA.

C. ABBC=A'B'B'C'.

D. ABBC=A'B'B'C'=ACA'C'.

Xem đáp án » 22/07/2024 62

Câu hỏi mới nhất

Xem thêm »
Xem thêm »