Câu hỏi:
16/07/2024 197Cho các chữ số: 1, 2, 3, 4, 5, 6, 7, 8, 9. Từ các chữ số trên có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau thỏa mãn số đó chia hết cho 2 và chữ số 4, 5 phải luôn đứng cạnh nhau?
A. 300 số
B. 114 số
C. 225 số
D. 120 số
Trả lời:
Ta có nên d ∈ {2;4;6;8}
·Với d=4; c=5, chọn a có 7 cách, chọn b có 6 cách nên có 7.6= 42 số thỏa mãn.
· Với d=2
1. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn.
2. Số cần lập có dạng chọn c có 6 cách nên có 6 số thỏa mãn
3. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
4. Số cần lập có dạng chọn a có 6 cách nên có 6 số thỏa mãn.
Như vậy với d=2 có 6+6+6+6=24 số thỏa mãn.
· Tương tự với d=6; d=8
Vậy có tất cả 42+3.24=114 số thỏa mãn.
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho X={1;2;3;4;5;6;7;8;9}. Từ X lập được bao nhiêu số sao cho Có 3 chữ số khác nhau và nhỏ hơn 496
Câu 2:
Cho một hộp 10 viên bi gồm 6 bi xanh và 4 bi vàng (mỗi viên bi có kích thước khác nhau). Hỏi có bao nhiêu cách xếp 10 viên bi vào hộp thành một hàng ngang sao cho không có bi vàng nào cạnh nhau?
Câu 3:
Một người có 7 chiếc áo sơ mi, trong đó có 3 chiếc áo sơ mi trắng; có 5 cái cà vạt trong đó có 2 cà vạt màu vàng. Hỏi người đó có bao nhiêu cách chọn một chiếc áo và một cà vạt thỏa mãn điều kiện: nếu chọn áo trắng thì không chọn cà vạt màu vàng
Câu 4:
Có bao nhiêu số gồm 7 chữ số đôi một khác nhau được lập bằng cách dùng 7 chữ số 1;2;3;4;5;7;9 sao cho hai chữ số chẵn không liền nhau?
Câu 5:
Từ 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau, sao cho trong các chữ số đó có mặt chữ số 0 và 1.
Câu 6:
Cho tập hợp A={ 1;2;3;4;5;6;7;8}. Có bao nhiêu tập hợp con X của tập A thỏa mãn điều kiện chứa 1 và không chứa 2?
Câu 7:
Trong một buổi giao lưu, có 5 học sinh trường X và 5 học sinh trường Y ngồi vào 2 bàn đối diện nhau. Hỏi có bao nhiêu cách xếp sao cho 2 người ngồi đối diện và ngồi cạnh thì khác trường nhau.
Câu 8:
Có 4 cuốn sách toán khác nhau, 3 sách lý khác nhau, 2 sách hóa khác nhau. Muốn sắp vào một kệ dài các cuốn sách cùng môn kề nhau, 2 loại toán và lý phải kề nhau thì số cách sắp là:
Câu 10:
Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?
Câu 11:
Từ các số 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau và hai chữ số 1 và 2 không đứng cạnh nhau.
Câu 12:
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Câu 13:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
Câu 14:
Một chồng sách gồm 4 quyển sách Toán, 3 quyển sách Vật lý, 5 quyển sách Hóa học. Hỏi có bao nhiêu cách xếp các quyển sách trên thành một hàng ngang sao cho 4 quyển sách Toán đứng cạnh nhau, 3 quyển Vật lý đứng cạnh nhau?
Câu 15:
Có bao nhiêu số tự nhiên trong đó các chữ số khác nhau ; nhỏ hơn 10000 được tạo thành từ năm chữ số: 0;2;5;7;8?