Câu hỏi:
19/07/2024 206
Cho ba thực dương a, b, c khác 1 và đồ thị ba hàm số lôgarit y = logax, y = logbx, y = logcx được cho bởi Hình 15. Kết luận nào sau đây là đúng với ba số a, b, c?
A. c < a < b.
B. c < b < a.
C. a < b < c.
D. b < c < a.
Cho ba thực dương a, b, c khác 1 và đồ thị ba hàm số lôgarit y = logax, y = logbx, y = logcx được cho bởi Hình 15. Kết luận nào sau đây là đúng với ba số a, b, c?
A. c < a < b.
B. c < b < a.
C. a < b < c.
D. b < c < a.
Trả lời:
Đáp án đúng là: D
Từ các đồ thị hàm số trên Hình 15 ta thấy:
⦁ Hàm số y = logax đồng biến trên (0; +∞) nên a > 1;
⦁ Hai hàm số y = logbx và y = logcx nghịch biến trên (0; +∞) nên 0 < b < 1; 0 < c < 1.
Thay cùng giá trị của x = x0 (với x0 ∈ (0; +∞)) vào hai hàm số ta thấy logbx0 > logcx0
Mà 0 < b < 1; 0 < c < 1 nên b < c.
Suy ra b < c < a.
Đáp án đúng là: D
Từ các đồ thị hàm số trên Hình 15 ta thấy:
⦁ Hàm số y = logax đồng biến trên (0; +∞) nên a > 1;
⦁ Hai hàm số y = logbx và y = logcx nghịch biến trên (0; +∞) nên 0 < b < 1; 0 < c < 1.
Thay cùng giá trị của x = x0 (với x0 ∈ (0; +∞)) vào hai hàm số ta thấy logbx0 > logcx0
Mà 0 < b < 1; 0 < c < 1 nên b < c.
Suy ra b < c < a.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
A. y = log3x.
B.
C.
D. y = logπx.
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
A. y = log3x.
B.
C.
D. y = logπx.
Câu 2:
Tập nghiệm của bất phương trình là:
A. (–∞; 16).
B. (16; +∞).
C. (0; 16).
D. (–∞; 0).
Tập nghiệm của bất phương trình là:
A. (–∞; 16).
B. (16; +∞).
C. (0; 16).
D. (–∞; 0).
Câu 3:
Trong cây cối có chất phóng xạ . Khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xạ của nó bằng 86% độ phóng xạ của mẫu gỗ tươi cùng loại. Xác định độ tuổi của mẫu gỗ cổ đó. Biết chu kì bán rã của là T = 5 739 năm, độ phóng xạ của chất phóng xạ tại thời điểm t được cho bởi công thức H = H0e–λt với H0 là độ phóng xạ ban đầu (tại thời điểm t = 0); là hằng số phóng xạ (Nguồn: Vật lí 12, NXBGD Việt Nam, 2021).
Trong cây cối có chất phóng xạ . Khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xạ của nó bằng 86% độ phóng xạ của mẫu gỗ tươi cùng loại. Xác định độ tuổi của mẫu gỗ cổ đó. Biết chu kì bán rã của là T = 5 739 năm, độ phóng xạ của chất phóng xạ tại thời điểm t được cho bởi công thức H = H0e–λt với H0 là độ phóng xạ ban đầu (tại thời điểm t = 0); là hằng số phóng xạ (Nguồn: Vật lí 12, NXBGD Việt Nam, 2021).
Câu 6:
Tập xác định của hàm số y = log0,5(2x – x2) là:
A. (–∞; 0) ∪ (2; +∞).
B. ℝ \{0; 2}.
C. [0; 2].
D. (0; 2).
Tập xác định của hàm số y = log0,5(2x – x2) là:
A. (–∞; 0) ∪ (2; +∞).
B. ℝ \{0; 2}.
C. [0; 2].
D. (0; 2).
Câu 10:
Điều kiện xác định của là:
A. x ∈ ℝ.
B. x ≥ 0.
C. x ≠ 0.
D. x > 0.
Điều kiện xác định của là:
A. x ∈ ℝ.
B. x ≥ 0.
C. x ≠ 0.
D. x > 0.
Câu 12:
Trong một trận động đất, năng lượng giải tỏa E (đơn vị: Jun, kí hiệu J) tại tâm địa chấn ở M độ Richter được xác định xấp xỉ bởi công thức: logE ≈ 11,4 + 1,5M.
(Nguồn: Giải tích 12 Nâng cao, NXBGD Việt Nam, 2021).
a) Tính xấp xỉ năng lượng giải tỏa tại tâm địa chấn ở 5 độ Richter.
b) Năng lượng giải tỏa tại tâm địa chấn ở 8 độ Richter gấp khoảng bao nhiêu lần năng lượng giải tỏa tại tâm địa chấn ở 5 độ Richter?
Trong một trận động đất, năng lượng giải tỏa E (đơn vị: Jun, kí hiệu J) tại tâm địa chấn ở M độ Richter được xác định xấp xỉ bởi công thức: logE ≈ 11,4 + 1,5M.
(Nguồn: Giải tích 12 Nâng cao, NXBGD Việt Nam, 2021).
a) Tính xấp xỉ năng lượng giải tỏa tại tâm địa chấn ở 5 độ Richter.
b) Năng lượng giải tỏa tại tâm địa chấn ở 8 độ Richter gấp khoảng bao nhiêu lần năng lượng giải tỏa tại tâm địa chấn ở 5 độ Richter?
Câu 13:
Tập nghiệm của bất phương trình (0,2)x > 1 là:
A. (–∞; 0,2).
B. (0,2; +∞).
C. (0; +∞).
D. (–∞; 0).
Tập nghiệm của bất phương trình (0,2)x > 1 là:
A. (–∞; 0,2).
B. (0,2; +∞).
C. (0; +∞).
D. (–∞; 0).