Câu hỏi:
22/10/2024 287Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
A. Ba điểm phân biệt.
B. Một điểm và một đường thẳng.
C. Hai đường thẳng cắt nhau.
D. Bốn điểm phân biệt.
Trả lời:
Đáp án đúng là : C
- Các yếu tố ,xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.
- A sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.
- B sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ra chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.
- D sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì sẽ không tạo được mặt phẳng nào đi qua cả 4 điểm.
→ C đúng.A,B,D sai.
* Mặt phẳng
Hình ảnh mặt phẳng trong thực tiễn
- Biểu diễn một mặt phẳng: Người ta thường biểu diễn mặt phẳng bằng một hình bình hành.
- Để kí hiệu mặt phẳng ta dùng chữ cái in hoa đặt trong dấu ngoặc ( ). Mặt phẳng (P) còn được viết là mp(P) hay (P).
* Điểm thuộc mặt phẳng
- Điểm A thuộc mặt phẳng (P) thì ta nói A nằm trên (P) hay (P) chứa A, ta kí hiệu
- Điểm B không thuộc mặt phẳng (P) thì ta nói B nằm ngoài (P) hay (P) không chứa B, ta kí hiệu .
* Biểu diễn các hình lên một mặt phẳng
- Hình biểu diễn của đường thẳng là đường thẳng, của đoạn thẳng là đoạn thẳng.
- Hình biểu diễn của hai đường thẳng song song là 2 đường thẳng song song, của 2 đường thẳng cắt nhau là 2 đường thẳng cắt nhau.
- Hình biểu diễn giữ nguyên quan hệ liên thuộc giữa điểm và đường thẳng.
- Dùng nét liền để biểu diễn cho đường nhìn thấy và nét đứt đoạn để biểu diễn cho đường bị che khuất.
2. Các tính chất thừa nhận của hình học không gian
- Có một và chỉ một đường thẳng đi qua hai điểm phân biệt cho trước.
- Có một và chỉ một mặt phẳng đi qua 3 điểm không thẳng hàng.
- Nếu một đường thẳng đi qua hai điểm phân biệt của một mặt phẳng thì mọi điểm của đường thẳng đều nằm trong mặt phẳng đó.
- Tồn tại 4 điểm không cùng thuộc một mặt phẳng.
- Nếu mọi điểm của đường thẳng d đều thuộc mặt phẳng (P) thì ta nói d nằm trong (P) hoặc (P) chứa d. Kí hiệu hoặc .
- Nếu hai mặt phẳng phân biệt có điểm chung thì các điểm chung của hai mặt phẳng là một đường thẳng đi qua điểm chung đó. Đường thẳng đó được gọi là giao tuyến, kí hiệu .
- Trên mỗi mặt phẳng, tất cả các kết quả đã biết trong hình học phẳng đều đúng.
3. Cách xác định mặt phẳng
- Một mặt phẳng hoàn toàn được xác định khi biết nó chứa 3 điểm không thẳng hàng.
- Một mặt phẳng được hoàn toàn xác định khi biết nó đi qua một đường thẳng và một điểm không thuộc đường thẳng đó.
- Một mặt phẳng được hoàn toàn xác định nếu biết nó chứa hai đường thẳng cắt nhau.
Xem thêm các bài viết liên quan,chi tiết khác:
Lý thuyết Toán 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian - Chân trời sáng tạo
Giải SBT Toán 11 Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD. Gọi G và E lần lượt là trọng tâm của tam giác ABD và ABC. Mệnh đề nào dưới đây đúng
Câu 2:
Cho tứ diện ABCD. Gọi M, N lần lượt là trọng tâm của các tam giác ABC, ABD. Những khẳng định nào sau là đúng?
(I):
(II):
(III):
Câu 3:
Cho hình hộp ABCD.A'B'C'D'. Trên các cạnh AA', BB', CC' lần lượt lấy ba điểm M, N, P sao cho . Biết mặt phẳng (MNP) cắt cạnh DD' tại Q. Tính tỉ số
Câu 6:
Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của (SAB) và (SCD) là
Câu 7:
Cho tứ diện ABCD. Gọi M là một điểm bất kì nằm trên đoạn AC (khác A và C). Mặt phẳng (P) qua M và song song với các đường thẳng AB, CD. Thiết diện của (P) với tứ diện đã cho là hình gì?
Câu 8:
Cho hình chóp S.ABCD có đáy là hình thoi cạnh 3a, SA = SD = 3a, . Gọi M, N lần lượt là trung điểm của các cạnh SA và SD, (P) là điểm thuộc cạnh AB sao cho AP = 2a. Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP).
Câu 9:
Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AC và BC. Trên mặt phẳng (BCD) lấy một điểm M tùy ý (điểm M có đánh dấu tròn như hình vẽ). Nêu đầy đủ các trường hợp (TH) để thiết diện tạo bởi mặt phẳng (MEF) với tứ diện ABCD là một tứ giác.
Câu 10:
Cho hình chóp S.ABCD có đáy là hình thang đáy lớn là CD. Gọi M là trung điểm của cạnh SA, N là giao điểm của cạnh SB và mặt phẳng (MCD). Mệnh đề nào sau đây là mệnh đề đúng?
Câu 12:
Cho bốn mệnh đề sau:
(I) Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong mặt phẳng (α) đều song song với (β).
(II) Hai đường thẳng nằm trên hai mặt phẳng song song thì song song với nhau.
(III) Trong không gian hai đường thẳng không có điểm chung thì chéo nhau.
(IV) Có thể tìm được hai đường thẳng song song mà mỗi đường thẳng cắt đồng thời hai đường thẳng chéo nhau cho trước.
Trong các mệnh đề trên có bao nhiêu mệnh đề sai?
Câu 13:
Cho hình lăng trụ ABC.A'B'C'. Gọi I, J, K lần lượt là trọng tâm của các tam giác ABC, ACC', A'B'C'. Mặt phẳng nào sau đây song song với mặt phẳng (IJK)?
Câu 14:
Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?
Câu 15:
Cho hình hộp ABCD.A'B'C'D'. Gọi M là điểm trên cạnh AC sao cho . Lấy N trên cạnh C'D sao cho . Với giá trị nào của x thì .