Trả lời:
b) Do SM ⊥ (ABCD) và AD ⊂ (ABCD) nên SM ⊥ AD.
Vì ABCD là hình chữ nhật nên AD ⊥ AB.
Ta có: AD ⊥ AB, AD ⊥ SM và AB ∩ SM = M trong (SAB).
Suy ra AD ⊥ (SAB).
b) Do SM ⊥ (ABCD) và AD ⊂ (ABCD) nên SM ⊥ AD.
Vì ABCD là hình chữ nhật nên AD ⊥ AB.
Ta có: AD ⊥ AB, AD ⊥ SM và AB ∩ SM = M trong (SAB).
Suy ra AD ⊥ (SAB).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi, SA ⊥ (ABCD). Chứng minh rằng (SAC) ⊥ (SBD).
Cho hình chóp S.ABCD có đáy ABCD là hình thoi, SA ⊥ (ABCD). Chứng minh rằng (SAC) ⊥ (SBD).
Câu 3:
Cho hình chóp S.ABC có SA ⊥ SB, SB ⊥ SC, SC ⊥ SA. Chứng minh rằng:
a) (SAB) ⊥ (SBC);
Cho hình chóp S.ABC có SA ⊥ SB, SB ⊥ SC, SC ⊥ SA. Chứng minh rằng:
a) (SAB) ⊥ (SBC);
Câu 4:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy, tam giác SAB vuông cân tại S. Gọi M là trung điểm của AB. Chứng minh rằng:
a) SM ⊥ (ABCD);
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt phẳng (SAB) vuông góc với mặt đáy, tam giác SAB vuông cân tại S. Gọi M là trung điểm của AB. Chứng minh rằng:
a) SM ⊥ (ABCD);
Câu 5:
Nêu ví dụ trong thực tiễn minh họa hình ảnh hai mặt phẳng vuông góc.
Nêu ví dụ trong thực tiễn minh họa hình ảnh hai mặt phẳng vuông góc.
Câu 6:
Cho hình lăng trụ ABC.A’B’C’ có tất cả các cạnh cùng bằng a, hai mặt phẳng (A’AB) và (A’AC) cùng vuông góc với (ABC).
a) Chứng minh rằng AA’ ⊥ (ABC).
Cho hình lăng trụ ABC.A’B’C’ có tất cả các cạnh cùng bằng a, hai mặt phẳng (A’AB) và (A’AC) cùng vuông góc với (ABC).
a) Chứng minh rằng AA’ ⊥ (ABC).
Câu 7:
Cho một đường thẳng không vuông góc với mặt phẳng cho trước. Chứng minh rằng tồn tại duy nhất một mặt phẳng chứa đường thẳng đó và vuông góc với mặt phẳng đã cho.
Cho một đường thẳng không vuông góc với mặt phẳng cho trước. Chứng minh rằng tồn tại duy nhất một mặt phẳng chứa đường thẳng đó và vuông góc với mặt phẳng đã cho.
Câu 8:
Chứng minh: Nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
Chứng minh: Nếu hai mặt phẳng vuông góc với nhau thì mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
Câu 9:
Để công trình xây dựng được an toàn và bền vững, người ta thường xây tường nhà vuông góc với nền nhà (Hình 44).
Hình ảnh tường nhà vuông góc với nền nhà gợi nên khái niệm nào trong hình học?
Để công trình xây dựng được an toàn và bền vững, người ta thường xây tường nhà vuông góc với nền nhà (Hình 44).
Hình ảnh tường nhà vuông góc với nền nhà gợi nên khái niệm nào trong hình học?
Câu 10:
Trong Hình 54, hai bìa của cuốn sách gợi nên hình ảnh hai mặt phẳng vuông góc với mặt bàn. Hãy dự đoán xem gáy sách có vuông góc với mặt bàn hay không.
Trong Hình 54, hai bìa của cuốn sách gợi nên hình ảnh hai mặt phẳng vuông góc với mặt bàn. Hãy dự đoán xem gáy sách có vuông góc với mặt bàn hay không.
Câu 11:
Quan sát ba mặt phẳng (P), (Q), (R) ở Hình 57, chỉ ra hai cặp mặt phẳng mà mỗi cặp gồm hai mặt phẳng vuông góc với nhau. Hãy sử dụng kí hiệu để viết những kết quả đó.
Quan sát ba mặt phẳng (P), (Q), (R) ở Hình 57, chỉ ra hai cặp mặt phẳng mà mỗi cặp gồm hai mặt phẳng vuông góc với nhau. Hãy sử dụng kí hiệu để viết những kết quả đó.
Câu 12:
Cho hình chóp S.OAB thoả mãn (AOS) ⊥ (AOB), (Hình 51).
a) Giao tuyến của hai mặt phẳng (AOS) và (AOB) là đường thẳng nào?
Cho hình chóp S.OAB thoả mãn (AOS) ⊥ (AOB), (Hình 51).
a) Giao tuyến của hai mặt phẳng (AOS) và (AOB) là đường thẳng nào?
Câu 13:
b) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng đó thì vuông góc với mặt phẳng còn lại.
b) Cho hai mặt phẳng song song. Nếu một mặt phẳng vuông góc với một trong hai mặt phẳng đó thì vuông góc với mặt phẳng còn lại.
Câu 15:
Cho tứ diện ABCD có (ABD) ⊥ (BCD) và CD ⊥ BD. Chứng minh rằng tam giác ACD vuông.
Cho tứ diện ABCD có (ABD) ⊥ (BCD) và CD ⊥ BD. Chứng minh rằng tam giác ACD vuông.