Tìm đường đi ngắn nhất từ đỉnh S đến T trong đồ thị trọng số ở Hình 17

Lời giải Bài 3 trang 66 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 206 03/07/2023


Giải Chuyên đề Toán 11 Chân trời sáng tạo Bài 3: Bài toán tìm đường đi ngắn nhất

Bài 3 trang 66 Chuyên đề Toán 11: Tìm đường đi ngắn nhất từ đỉnh S đến T trong đồ thị trọng số ở Hình 17.

Bài 3 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Lời giải:

Bài 3 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo

– Gán nhãn cho S bằng 0 (tức là, nS = 0), các đỉnh khác bằng ∞. Khoanh tròn đỉnh A.

– Tại các đỉnh kề với S, gồm A, B, C, D. ta có:

⦁ nA = nS + wSA = 0 + 3 = 3.Vì 3 < ∞ nên ta đổi nhãn của A thành 3.

⦁ nB = nS + wSB = 0 + 6 = 6.Vì 6 < ∞ nên ta đổi nhãn của B thành 6.

⦁ nC = nS + wSC = 0 + 9 = 9.Vì 9 < ∞ nên ta đổi nhãn của C thành 9.

⦁ nD = nS + wSD = 0 + 12 = 12.Vì 12 < ∞ nên ta đổi nhãn của D thành 12.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là A nên ta khoanh tròn đỉnh A (đỉnh gần S nhất, chỉ tính các đỉnh khác S).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh A gồm B, T, ta có:

⦁ nB = nA + wAB = 3 + 2 = 5.Vì 5 < 6 (6 là nhãn hiện tại của B) nên ta đổi nhãn của B thành 5.

⦁ nT = nA + wAT = 3 + 15 = 18.Vì 18 < ∞ nên ta đổi nhãn của T thành 18.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B nên ta khoanh tròn đỉnh B (đỉnh gần S thứ hai).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh B chỉ có đỉnh C, ta có:

nC = nB + wBC = 5 + 3 = 8.Vì 8 < 9 (9 là nhãn hiện tại của C) nên ta đổi nhãn của C thành 8.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là đỉnh C nên ta khoanh tròn đỉnh C (đỉnh gần S thứ ba).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh C gồm D, T, ta có:

⦁ nD = nC + wCD = 8 + 4 = 12.Vì 12 cũng là nhãn hiện tại của D nên ta giữ nguyên nhãn của D là 12.

⦁ nT = nC + wCT = 8 + 5 = 13.Vì 13 < 18 (18 là nhãn hiện tại của T) nên ta đổi nhãn của T thành 13.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là đỉnh D nên ta khoanh tròn đỉnh D (đỉnh gần S thứ tư).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh D chỉ còn đỉnh T, ta có:

nT = nD + wDT = 12 + 9 = 21.Vì 21 > 13 (13 là nhãn hiện tại của T) nên ta giữ nguyên nhãn của T là 13.

Lúc này, ta thấy chỉ còn đỉnh T nên ta khoanh tròn đỉnh T (đỉnh gần S thứ năm).

– Nhìn lại các bước trên, ta thấy:

nT = 13 = nC + wCT

= nB + wBC + wCT

= nA + wAB + wBC + wCT

= nS + wSA + wAB + wBC + wCT

= wSA + wAB + wBC + wCT

= lSABCT.

Vậy SABCT là đường đi ngắn nhất từ S đến T, với độ dài bằng 13.

1 206 03/07/2023


Xem thêm các chương trình khác: