Sử dụng sơ đồ ở Hình 1 để trả lời các câu hỏi dưới đây: Từ thành phố A, hãng X có bao nhiêu đường
Lời giải Khám phá 1 trang 44 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.
Giải Chuyên đề Toán 11 Chân trời sáng tạo Bài 1: Đồ thị
Khám phá 1 trang 44 Chuyên đề Toán 11:
Sử dụng sơ đồ ở Hình 1 để trả lời các câu hỏi dưới đây:
a) Từ thành phố A, hãng X có bao nhiêu đường bay đến năm thành phố còn lại?
b) Giữa sáu thành phố trên, có tất cả bao nhiêu đường bay của hãng X?
c) Có thể giải đáp thắc mắc ở Hoạt động khởi động không?
Lời giải:
a) Quan sát sơ đồ ở Hình 1, ta thấy:
⦁ Có 1 đường bay từ thành phố A đến thành phố B;
⦁ Có 1 đường bay từ thành phố A đến thành phố D;
⦁ Có 1 đường bay từ thành phố A đến thành phố E;
⦁ Có 1 đường bay từ thành phố A đến thành phố F.
Vậy từ thành phố A, hãng X có tất cả 4 đường bay đến năm thành phố còn lại.
b)Vì đường bay của hãng X là đường bay hai chiều nên đường bay từ thành phố B đến thành phố A đã được tính vào đường bay từ thành phố A đến thành phố B.
Do đó từ thành phố B, hãng X có thêm:
⦁ 1 đường bay đến thành phố C;
⦁ 1 đường bay đến thành phố D;
⦁ 1 đường bay đến thành phố F.
Khi đó, từ thành phố B, hãng X có thêm 3 đường bay đến năm thành phố còn lại.
Tương tự như vậy, ta được:
– Từ thành phố C, hãng X có thêm 2 đường bay đến năm thành phố còn lại;
– Từ thành phố D, hãng X có thêm 1 đường bay đến năm thành phố còn lại;
– Từ thành phố E, hãng X có thêm 1 đường bay đến năm thành phố còn lại.
Vì đường bay của hãng X là đường bay hai chiều nên đường bay từ thành phố F đến năm thành phố còn lại đã được tính vào các đường bay kể trên.
Vậy giữa sáu thành phố trên, có tất cả 4 + 3 + 2 + 1 + 1 = 11 đường bay của hãng X.
Chú ý: Ngoài cách trên, ta có thể đếm số đường cong và đường thẳng (thể hiện đường bay) trên Hình 1 (hoặc Bảng 1) để kết luận về số đường bay của hãng X.
c) Ta có thể giải đáp thắc mắc ở Hoạt động khởi động như sau:
Bước 1: Từ thành phố A bay đến thành phố B;
Bước 2: Từ thành phố B bay đến thành phố C;
Bước 3: Từ thành phố C bay đến thành phố D;
Bước 4: Từ thành phố D bay đến thành phố F;
Bước 5: Từ thành phố F bay đến thành phố E;
Bước 6: Từ thành phố E bay về thành phố A.
Vậy từ thành phố A, ta có thể thăm năm thành phố B, C, D, E và F bằng các chuyến bay của hãng X sao cho mỗi thành phố chỉ qua đúng một lần, rồi quay trở về A.
Chú ý: Ta có thể thay đổi thứ tự bay đến các thành phố chỉ cần hãng X có chuyến bay giữa hai thành phố liền kề.
Xem thêm lời giải bài tập Chuyên đề Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Khám phá 1 trang 44 Chuyên đề Toán 11: Sử dụng sơ đồ ở Hình 1 để trả lời các câu hỏi dưới đây:
Thực hành 1 trang 46 Chuyên đề Toán 11: Cho đồ thị G như Hình 5....
Thực hành 2 trang 48 Chuyên đề Toán 11: Cho đồ thị như Hình 11.
Bài 2 trang 48 Chuyên đề Toán 11: Cho đồ thị như Hình 13.
Bài 4 trang 49 Chuyên đề Toán 11: Biết rằng G là đồ thị có 6 đỉnh, 8 cạnh và các đỉnh của nó...
Bài 6 trang 49 Chuyên đề Toán 11: Cho tập hợp số V = {2; 3; 4; 5; 6; 7; 11; 12}...
Xem thêm lời giải bài tập Chuyên đề Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Đường đi Euler và đường đi Hamilton
Bài 3: Bài toán tìm đường đi ngắn nhất
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo