Quan sát Hình 10 và cho biết: Trong ba cạnh AB, AA’ và AD của hình hộp chữ nhật
Lời giải Khám phá 3 trang 74 Chuyên đề Toán 11 sách Chuyên đề học tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.
Giải Chuyên đề Toán 11 Chân trời sáng tạo Bài 1: Hình biểu diễn của một hình, khối
Khám phá 3 trang 74 Chuyên đề Toán 11: Quan sát Hình 10 và cho biết:
– Trong ba cạnh AB, AA’ và AD của hình hộp chữ nhật, cạnh nào song song với một trong ba mặt phẳng chiếu (P1), (P2), (P3)?
– Tìm hai giao tuyến của (P1) và (P2) với mặt phẳng đi qua điểm D và vuông góc với cả (P1) và (P2).
Lời giải:
– Trong ba cạnh AB, AA’ và AD của hình hộp chữ nhật ABCD.A’B’C’D’, ta có:
⦁ Cạnh AB song song với các mặt phẳng chiếu (P1) và (P2);
⦁ Cạnh AA’ song song với các mặt phẳng chiếu (P1) và (P3);
⦁ Cạnh AD song song với các mặt phẳng chiếu (P2) và (P3).
Vậy cả ba cạnh AB, AA’ và AD của hình hộp chữ nhật đều song song với một trong ba mặt phẳng chiếu (P1), (P2) và (P3).
– Xác định hai giao tuyến của (P1) và (P2) với mặt phẳng đi qua điểm D và vuông góc với cả (P1) và (P2):
Ta có AD ⊥ AA’ (do ABCD.A’B’C’D’ là hình hộp chữ nhật).
Mà AA’ // (P1).
Suy ra AD ⊥ (P1).
Do đó (AA’D’D) ⊥ (P1).
Chứng minh tương tự, ta được (AA’D’D) ⊥ (P2).
Vì vậy mặt phẳng đi qua điểm D và vuông góc với cả (P1) và (P2) là (AA’D’D).
Gọi D1, D1’ lần lượt là hình chiếu vuông góc của các điểm D, D’ lên mặt phẳng (P1).
Suy ra D1, D1’∈ (AA’D’D) và D1, D1’∈ (P1).
Do đó hay d4 = (AA’D’D) ∩ (P1).
Chứng minh tương tự, ta được d2 = (AA’D’D) ∩ (P2).
Vậy d4, d2 lần lượt là hai giao tuyến cần tìm.
Xem thêm lời giải bài tập Chuyên đề Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Khám phá 3 trang 74 Chuyên đề Toán 11: Quan sát Hình 10 và cho biết:
Thực hành 2 trang 75 Chuyên đề Toán 11: a) Trên Hình 10, độ dài cạnh AD được bảo toàn trên các hình chiếu nào của bản vẽ? Tại sao?
Vận dụng 2 trang 75 Chuyên đề Toán 11: Trong bản vẽ biểu diễn hình nón trong Hình 12.
Khám phá 4 trang 75 Chuyên đề Toán 11: Cho hình hộp chữ nhật OABC.O1A1B1C1. Ba tia Ox, Oy, Oz...
Bài 1 trang 79 Chuyên đề Toán 11: Phác họa hình chiếu vuông góc của:
Bài 3 trang 80 Chuyên đề Toán 11: Trong bản vẽ biểu diễn hình lăng trụ lục giác đều trong Hình 28.
Bài 4 trang 80 Chuyên đề Toán 11: Vẽ hình chiếu vuông góc của các hình sau
Xem thêm lời giải bài tập Chuyên đề Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Đường đi Euler và đường đi Hamilton
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo