Câu hỏi:
11/11/2024 228Số cách sắp xếp 6 học sinh vào một bàn dài có 10 chỗ ngồi là:
Trả lời:
Đáp án đúng: C.
*Lời giải:
*Phương pháp giải:
- áp dụng công thức về tổ chỉnh hợp ( do xếp 6 học sinh vào 1 bàn dài 10 chỗ và có sự sắp xếp ):
*Lý thuyến cần nắm về tổ hợp - xác suất
1. Quy tắc cộng: Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m+n cách thực hiện.
2. Quy tắc nhân: Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m.n cách hoàn thành công việc.
3. Hoán vị:
Cho tập hợp A gồm n phần tử (n ≥ 1).
- Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử.
- Số các hoán vị của n phần tử là: Pn = n(n-1)...2.1 = n!
4. Chỉnh hợp:
Cho tập hợp A gồm n phần tử (n ≥ 1).
- Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.
- Số các chỉnh hợp chập k của n phần tử là:
5. Tổ hợp:
Giả sử A có n phần tử (n ≥ 1).
- Mỗi tập hợp gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho. (1 ≤ k ≤ n).
Số các tổ hợp chập k của n phần tử là:
6. Công thức nhị thức Niu-tơn:
(a + b)n = Cn0an + Cn1an - 1b + … + Cnkan - kbk + … + Cnn-1abn-1 + Cnnbn
7. Phép toán trên các biến cố:
- Giả sử A là biến cố liên quan đến một phép thử.
Khi đó, tập Ω\A được gọi là biến cố đối của biến cố A, kí hiệu là A−.
- Giả sử A và B là hai biến cố liên quan đến một phép thử:
+ Tập A ⋃ B được gọi là hợp của các biến cố A và B.
+ Tập A ⋂ B được gọi là giao của các biến cố A và B.
+ Nếu A ⋂ B = ∅ thì ta nói A và B xung khắc.
8. Xác suất của biến cố:
Giả sử A là biến cố liên quan đến phép thử chỉ có một số hữu hạn kết quả đồng khả năng xuất hiện. Khi đó, xác suất của biến cố A là:
trong đó: n(A) là số phần tử của A; còn n(Ω) là số các kết quả có thể xảy ra của phép thử.
9. Tính chất của xác suất:
Giả sử A và B là các biến cố liên quan đến một phép thử có một số hữu hạn kết quả đồng khả năng xuất hiện.
P(∅) = 0, P(Ω) = 1
0 ≤ P(A) ≤ 1, với mọi biến cố A.
Nếu A và B xung khắc, thì P(AB) = P(A) + P(B) (công thức cộng xác suất)
Với mọi biến cố A, ta có: P(A−) = 1 – P(A).
A và B là hai biến cố độc lập khi và chỉ khi P(A.B) = P(A).P(B).
Xem thêm các bài viết liên quan hay, chi tiết
Lý thuyết Tổ hợp - xác suất hay, chi tiết
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ 1 đội văn nghệ gồm 5 nam và 8 nữ cần lập 1 nhóm gồm 4 người hát tốp ca. Xác suất để trong 4 người được chọn đều là nam bằng
Câu 2:
Một trò chơi trong đó người chơi trả lời đúng một câu hỏi được cộng 10 điểm, trả lời sai một câu hỏi bị trừ 2 điểm. Biết rằng người chơi trả lời 20 câu hỏi và được 44 điểm. Hỏi người chơi đó đã trả lời sai mấy câu hỏi?
Câu 3:
Một hộp chứa 15 qưả cầu gồm 7 quả cầu màu đỏ và 8 quả cầu màu xanh. Chọn ngẫu nhiên đồng thời hai quả cầu từ hộp đó. Tính xác suất đế chọn được hai quả cầu cùng màu.
Câu 4:
Một lớp học có 30 học sinh gồm có cả nam và nữ. Chọn ngẫu nhiên 3 học sinh để tham gia hoạt động của Đoàn trường. Xác xuất chọn được 2 nữ là 1 nam là . Tính số học sinh nữ của lớp.
Câu 5:
Cho đa giác lồi 10 cạnh. Có bao nhiêu tam giác được tạo thành từ các đỉnh của đa giác đã cho?
Câu 6:
Một tổ có 8 học sinh. Có bao nhiêu cách chọn 3 bạn để làm các công việc trực nhật: quét lớp, lau bảng, đổ rác (mỗi bạn làm một công việc)?
Câu 7:
Lớp 12A1 có 20 nam và 15 nữ. Có bao nhiêu cách chọn bốn bạn học sinh từ lớp 12A1 đi dự Đại hội đoàn trường sao cho có ít nhất một học sinh nữ được chọn.
Câu 8:
Gieo một con súc sắc cân đối và đồng chất. Tính xác suất đế xuất hiện mặt có số chấm chia hết cho
Câu 9:
Có tất cả bao nhiêu số tự nhiên có 3 chữ số và 3 chữ số đó đôi một khác nhau?
Câu 10:
Một nhóm học sinh có 10 người. Cần chọn 3 học sinh trong nhóm để làm 3 công việc là tưới cây, lau bàn và nhặt rác, mỗi người làm một công việc. Số cách chọn là
Câu 11:
Cho tập hợp các số nguyên dương nhỏ hơn 19. Chọn ngẫu nhiên đồng thời 3 số. Xác suất để chọn được ít nhất một số chia hết cho 4 bằng
Câu 14:
Một lớp có 20 học sinh đăng kí dự thi tổ hợp Khoa học tự nhiên, 25 học sinh đăng kí dự thi tổ hợp Khoa học xã hội và 5 học sinh đăng kí dự thi cả hai tổ hợp trên. Số cách chọn lần lượt 3 học sinh trong lớp bằng
Câu 15:
Có 3 chiếc hộp A, B, C. Hộp A chứa 4 bi đỏ, 3 bi trắng. Hộp B chứa 3 bi đỏ, 2 bi vàng. Hộp C chứa 2 bi đỏ, 2 bi vàng. Lấy ngẫu nhiên một hộp từ 3 hộp này, rồi lấy ngẫu nhiên một bi từ hộp đó. Tính xác suất để lấy được một bi đỏ.