Câu hỏi:
22/11/2024 214Hàm số nào dưới đây đồng biến trên khoảng .
Trả lời:
Đáp án đúng là C
*Lời giải:
*Phương pháp giải:
Bước 1. Tìm tập xác định D.
Bước 2. Tính đạo hàm y’ = f'(x). Tìm các giá trị xi (i=1, 2, .., n) mà tại đó f'(x) = 0 hoặc f'(x) không xác định.
Bước 4. Sắp xếp các giá trị xi theo thứ tự tăng dần và lập bảng biến thiên.
Bước 5. Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số và chọn đáp án chính xác nhất.
*Lý thuyết
1. Định nghĩa.
Cho hàm số y = f(x) xác định trên K, với K là một khoảng, nửa khoảng hoặc một đoạn.
- Hàm số y = f(x) đồng biến (tăng) trên K nếu ∀ x1, x2 ∈ K, x1 < x2 ⇒ f(x1) < f(x2).
- Hàm số y = f(x) nghịch biến (giảm) trên K nếu ∀ x1, x2 ∈ K, x1 < x2 ⇒ f(x1) > f(x2).
2. Điều kiện cần để hàm số đơn điệu.
Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.
– Nếu hàm số đồng biến trên khoảng K thì f'(x) ≥ 0, ∀ x ∈ K
– Nếu hàm số nghịch biến trên khoảng K thì f'(x) ≤ 0, ∀ x ∈ K.
3. Điều kiện đủ để hàm số đơn điệu.
Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.
– Nếu f'(x) > 0, ∀x ∈ K thì hàm số đồng biến trên khoảng K.
– Nếu f'(x) < 0, ∀x ∈ K thì hàm số nghịch biến trên khoảng K.
– Nếu f'(x) = 0, ∀x ∈ K thì hàm số không đổi trên khoảng K.
Lưu ý
– Nếu f'(x) ≥ 0, ∀x ∈ K (hoặc f'(x) ≤ 0, ∀x ∈ K) và f'(x) = 0 chỉ tại một số điểm hữu hạn của K thì hàm số đồng biến trên khoảng K (hoặc nghịch biến trên khoảng K).
Xem thêm các bài viết liên quan hay, chi tiết:
50 bài tập về sự đồng biến và nghịch biến của hàm số (có đáp án 2024) – Toán 12
Khảo sát sự biến thiên và vẽ đồ thị các hàm số phân thức
Trắc nghiệm Sự đồng biến, nghịch biến của hàm số (có đáp án)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đồ thị như hình vẽ là của hàm số nào trong các hàm số đã cho dưới đây
Câu 4:
Tính tổng S tất cả các giá trị nguyên dương m sao cho đồ thị hàm số có 2 tiệm cận ngang.
Câu 7:
Gọi M, N lần lượt là GTLN, TNNN của hàm số trên [1;2]. Khi đó tổng M+N bằng
Câu 8:
Tìm tất cả giá trị thực của tham số m để mọi tiếp tuyến của đồ thị hàm số có hệ số góc luôn dương.
Câu 9:
Cho hàm số f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Mệnh đề nào dưới đây đúng?
Câu 10:
Gọi S là tập hợp tất cả các giá trị nguyên dương và nhỏ hơn 2018 của tham số m để hàm số nghịch biến trên khoảng (1;9). Tính số phần tử của tập hợp S.
Câu 11:
Cho hàm số với m là tham số thực. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m trong khoảng (-50;50) để hàm số nghịch biến trên (-1;1). Số phần tử của S là:
Câu 12:
Tìm tổng tất cả các giá trị thực của tham số m sao cho đường thẳng đi qua hai điểm cực trị của đồ thị hàm số song song đường thẳng y= -4x.
Câu 14:
Cho đồ thị hàm số y=f(x) như hình vẽ. Tìm tất cả các giá trị thực m để phương trình f(x) +1=m có ba nghiệm phân biệt
Câu 15:
Cho hàm số (m là tham số thức) thỏa mãn . Giá trị m thuộc tập nào dưới đây?