Câu hỏi:
18/07/2024 238
Gieo hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, gọi B là biến cố “Xuất hiện hai mặt có cùng số chấm”. Hai biến cố A và B có thể đồng thời cùng xảy ra không?
Gieo hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, gọi B là biến cố “Xuất hiện hai mặt có cùng số chấm”. Hai biến cố A và B có thể đồng thời cùng xảy ra không?
Trả lời:
Ta có A = {(1; 4); (2; 3); (3; 2); (4; 1)}.
B = {(1; 1); (2; 2); (3; 3); (4; 4); (5; 5); (6; 6)}.
AB = ∅.
Do đó A và B không đồng thời xảy ra.
Ta có A = {(1; 4); (2; 3); (3; 2); (4; 1)}.
B = {(1; 1); (2; 2); (3; 3); (4; 4); (5; 5); (6; 6)}.
AB = ∅.
Do đó A và B không đồng thời xảy ra.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
b) Gọi là biến cố đối của biến cố A. Hãy viết tập hợp mô tả các biến cố giao và
b) Gọi là biến cố đối của biến cố A. Hãy viết tập hợp mô tả các biến cố giao và
Câu 2:
Một bệnh truyền nhiễm có xác suất truyền bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Anh Lâm tiếp xúc với 1 người bệnh hai lần, trong đó có một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất anh Lâm bị lây bệnh từ người bệnh mà anh tiếp xúc đó.
Một bệnh truyền nhiễm có xác suất truyền bệnh là 0,8 nếu tiếp xúc với người bệnh mà không đeo khẩu trang; là 0,1 nếu tiếp xúc với người bệnh mà có đeo khẩu trang. Anh Lâm tiếp xúc với 1 người bệnh hai lần, trong đó có một lần đeo khẩu trang và một lần không đeo khẩu trang. Tính xác suất anh Lâm bị lây bệnh từ người bệnh mà anh tiếp xúc đó.
Câu 3:
Một xạ thủ bắn lần lượt 2 viên đạn vào một bia. Xác suất trúng đích của viên thứ nhất và thứ hai lần lượt là 0,9 và 0,6. Biết rằng kết quả các lần bắn độc lập với nhau. Tính xác suất của các biến cố sau bằng cách sử dụng sơ đồ hình cây:
a) “Cả 2 lần bắn đều trúng đích”;
b) “Cả 2 lần bắn đều không trúng đích”;
c) “Lần bắn thứ nhất trúng đích, lần bắn thứ hai không trúng đích”.
Một xạ thủ bắn lần lượt 2 viên đạn vào một bia. Xác suất trúng đích của viên thứ nhất và thứ hai lần lượt là 0,9 và 0,6. Biết rằng kết quả các lần bắn độc lập với nhau. Tính xác suất của các biến cố sau bằng cách sử dụng sơ đồ hình cây:
a) “Cả 2 lần bắn đều trúng đích”;
b) “Cả 2 lần bắn đều không trúng đích”;
c) “Lần bắn thứ nhất trúng đích, lần bắn thứ hai không trúng đích”.
Câu 4:
Cho A và B là hai biến cố độc lập.
a) Biết P(A) = 0,7 và P(B) = 0,2. Hãy tính xác suất của các biến cố AB, và .
Cho A và B là hai biến cố độc lập.
a) Biết P(A) = 0,7 và P(B) = 0,2. Hãy tính xác suất của các biến cố AB, và .
Câu 5:
Hộp thứ nhất chứa 3 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 3. Hộp thứ hai chứa 5 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 5. Lấy ra ngẫu nhiên từ mỗi hộp 1 thẻ. Gọi A là biến cố “Tổng các số ghi trên 2 thẻ bằng 6”, B là biến cố “Tích các số ghi trên 2 thẻ là số lẻ”.
a) Hãy viết tập hợp mô tả biến cố AB và tính P(AB).
Hộp thứ nhất chứa 3 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 3. Hộp thứ hai chứa 5 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 5. Lấy ra ngẫu nhiên từ mỗi hộp 1 thẻ. Gọi A là biến cố “Tổng các số ghi trên 2 thẻ bằng 6”, B là biến cố “Tích các số ghi trên 2 thẻ là số lẻ”.
a) Hãy viết tập hợp mô tả biến cố AB và tính P(AB).
Câu 6:
b) Hãy tìm một biến cố khác rỗng và xung khắc với cả hai biến cố A và B.
b) Hãy tìm một biến cố khác rỗng và xung khắc với cả hai biến cố A và B.
Câu 7:
Hãy chỉ ra 2 biến cố độc lập trong phép thử tung 2 đồng xu cân đối và đồng chất.
Hãy chỉ ra 2 biến cố độc lập trong phép thử tung 2 đồng xu cân đối và đồng chất.
Câu 8:
b) Biết P(A) = 0,5 và P(AB) = 0,3. Hãy tính xác suất của các biến cố B, và .
b) Biết P(A) = 0,5 và P(AB) = 0,3. Hãy tính xác suất của các biến cố B, và .
Câu 10:
Nguyệt và Nhi cùng tham gia một cuộc thi bắn cung. Xác suất bắn trúng tâm bia của Nguyệt là 0,9 và của Nhi là 0,8. Tính xác suất để cả hai bạn cùng bắn trúng tâm bia.
Nguyệt và Nhi cùng tham gia một cuộc thi bắn cung. Xác suất bắn trúng tâm bia của Nguyệt là 0,9 và của Nhi là 0,8. Tính xác suất để cả hai bạn cùng bắn trúng tâm bia.
Câu 11:
Một hộp chứa 21 tấm thẻ cùng loại được đánh số từ 1 đến 21. Chọn ra ngẫu nhiên 1 thẻ từ hộp. Gọi A là biến cố “Số ghi trên thẻ được chọn chia hết cho 2”, B là biến cố “Số ghi trên thẻ được chọn chia hết cho 3”.
a) Hãy mô tả bằng lời biến cố AB.
Một hộp chứa 21 tấm thẻ cùng loại được đánh số từ 1 đến 21. Chọn ra ngẫu nhiên 1 thẻ từ hộp. Gọi A là biến cố “Số ghi trên thẻ được chọn chia hết cho 2”, B là biến cố “Số ghi trên thẻ được chọn chia hết cho 3”.
a) Hãy mô tả bằng lời biến cố AB.
Câu 12:
Hãy tìm một biến cố khác rỗng và xung khắc với cả ba biến cố A, B và C trong Ví dụ 1.
Hãy tìm một biến cố khác rỗng và xung khắc với cả ba biến cố A, B và C trong Ví dụ 1.
Câu 14:
Gieo hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, B là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc bằng 6”.
a) Hãy viết tập hợp mô tả các biến cố trên.
Gieo hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, B là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc bằng 6”.
a) Hãy viết tập hợp mô tả các biến cố trên.
Câu 15:
An và Bình mỗi người gieo một con xúc xắc cân đối và đồng chất. Gọi A là biến cố “An gieo được mặt 6 chấm” và B là biến cố “Bình gieo được mặt 6 chấm”.
a) Tính xác suất của biến cố B.
An và Bình mỗi người gieo một con xúc xắc cân đối và đồng chất. Gọi A là biến cố “An gieo được mặt 6 chấm” và B là biến cố “Bình gieo được mặt 6 chấm”.
a) Tính xác suất của biến cố B.