Câu hỏi:
12/11/2024 328Cho tập hợp M có 10 phần tử. Số tập con gồm 2 phần tử của M là
A.
B.
C.
D.
Trả lời:
Đáp án đúng: B
*Lời giải:
Số tập con gồm 2 phần tử của M là số cách chọn 2 phần tử bất kì trong 10 phần tử của M . Do đó số tập con gồm 2 phần tử của M là
*Phương pháp giải:
- Chọn ra 2 phần tử của M gồm 10 phần tử ( không sắp xếp) nên sẽ là tổ hợp chập 2 của 10:
*Lý thuyến cần nắm về tổ hợp - xác suất
1. Quy tắc cộng: Một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động này có m cách thực hiện, hành động kia có n cách thực hiện không trùng với bất kì cách nào của hành động thứ nhất thì công việc đó có m+n cách thực hiện.
2. Quy tắc nhân: Một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu có m cách thực hiện hành động thứ nhất và ứng với mỗi cách đó có n cách thực hiện hành động thứ hai thì có m.n cách hoàn thành công việc.
3. Hoán vị:
Cho tập hợp A gồm n phần tử (n ≥ 1).
- Mỗi kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A được gọi là một hoán vị của n phần tử.
- Số các hoán vị của n phần tử là: Pn = n(n-1)...2.1 = n!
4. Chỉnh hợp:
Cho tập hợp A gồm n phần tử (n ≥ 1).
- Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập hợp A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.
- Số các chỉnh hợp chập k của n phần tử là:
5. Tổ hợp:
Giả sử A có n phần tử (n ≥ 1).
- Mỗi tập hợp gồm k phần tử của A được gọi là một tổ hợp chập k của n phần tử đã cho. (1 ≤ k ≤ n).
Số các tổ hợp chập k của n phần tử là:
6. Công thức nhị thức Niu-tơn:
(a + b)n = Cn0an + Cn1an - 1b + … + Cnkan - kbk + … + Cnn-1abn-1 + Cnnbn
7. Phép toán trên các biến cố:
- Giả sử A là biến cố liên quan đến một phép thử.
Khi đó, tập Ω\A được gọi là biến cố đối của biến cố A, kí hiệu là A−.
- Giả sử A và B là hai biến cố liên quan đến một phép thử:
+ Tập A ⋃ B được gọi là hợp của các biến cố A và B.
+ Tập A ⋂ B được gọi là giao của các biến cố A và B.
+ Nếu A ⋂ B = ∅ thì ta nói A và B xung khắc.
8. Xác suất của biến cố:
Giả sử A là biến cố liên quan đến phép thử chỉ có một số hữu hạn kết quả đồng khả năng xuất hiện. Khi đó, xác suất của biến cố A là:
trong đó: n(A) là số phần tử của A; còn n(Ω) là số các kết quả có thể xảy ra của phép thử.
9. Tính chất của xác suất:
Giả sử A và B là các biến cố liên quan đến một phép thử có một số hữu hạn kết quả đồng khả năng xuất hiện.
P(∅) = 0, P(Ω) = 1
0 ≤ P(A) ≤ 1, với mọi biến cố A.
Nếu A và B xung khắc, thì P(AB) = P(A) + P(B) (công thức cộng xác suất)
Với mọi biến cố A, ta có: P(A−) = 1 – P(A).
A và B là hai biến cố độc lập khi và chỉ khi P(A.B) = P(A).P(B).
Xem thêm các bài viết liên quan hay, chi tiết
Lý thuyết Tổ hợp - xác suất hay, chi tiết
Giải Toán 11 Chương 2: Tổ hợp – xác suất
Các dạng bài tập Tổ hợp - Xác suất
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một hộp có 5 viên bi xanh, 6 viên bi đỏ và 7 viên bi vàng. Chọn ngẫu nhiên 5 viên bi trong hộp, tính xác suất để 5 viên bi được chọn có đủ màu và số bi đỏ bằng số bi vàng.
Câu 2:
Cho đa giác đều 32 cạnh. Gọi S là tập hợp cáctứ giác tạo thành có 4 đỉnh lấy từ các đỉnh của đa giác đều. Chọn ngẫu nhiên một phần tử của S . Xác suất để chọn được một hình chữ nhật là
Câu 3:
Một đề trắc nghiệm gồm 20 câu, mỗi câu có 4 đáp án và chỉ có một đáp án đúng. Bạn Anh làm đúng 12 câu, còn 8 câu bạn Anh đánh hú họa vào đáp án mà Anh cho là đúng. Mỗi câu đúng được 0,5 điểm. Tính xác suất để Anh được 9 điểm ?
Câu 5:
Một người bỏ ngẫu nhiên ba lá thư vào ba chiếc phong bì đã ghi địa chỉ. Xác suất để có ít nhất một lá thư được bỏ đúng phong bì là
Câu 6:
Lớp 11A có 40 học sinh trong đó có 12 học sinh đạt điểm tổng kết môn Hóa học loại giỏi và 13 học sinh đạt điểm tổng kết môn Vật lí loại giỏi. Biết rằng khi chọn một học sinh của lớp đạt điểm tổng kết môn Hóa học hoặc Vật lí loại giỏi có xác suất là 0,5. Số học sinh đạt điểm tổng kết giỏi cả hai môn Hóa học và Vật lí là
Câu 7:
Trong 1 hộp kín có 20 tấm thẻ, ghi trên mỗi tấm thẻ là các số từ 1 đến 20 (2 tấm khác nhau thì ghi số khác nhau). Lấy ngẫu nhiên từ trong hộp đó ra 2 tấm thẻ. Tìm xác suất để tổng 2 số ghi trên 2 tấm thẻ đó chia hết cho 3.
Câu 8:
Một hộp chứa 7 viên bi khác nhau. Lấy ngẫu nhiên 2 viên bi trong hộp. Số cách lấy là
Câu 9:
Chọn ngẫu nhiên một số tự nhiên gồm bốn chữ số phân biệt được lập thành từ các chữ số 1, 2, 3, 4, 5, 6, 7. Tính xác suất để số được chọn lớn hơn 2018.
Câu 10:
Xếp ngẫu nhiên 10 học sinh gồm 5 học sinh nam và 5 học sinh nữ thành một hàng ngang. Xác suất để trong 10 học sinh trên không có hai học sinh cùng giới tính đứng cạnh nhau, đồng thời Hoàng và Lan không đứng cạnh nhau bằng
Câu 12:
Có bao nhiêu cách xếp 6 đồ vật khác nhau vào 3 chiếc hộp khác nhau sao cho mỗi hộp có ít nhất 1 đồ vật (không kể tới thứ tự các đồ vật trong mỗi hộp)?
Câu 14:
Lớp 11A có 40 học sinh gồm 20 nam và 20 nữ. Trong 20 học sinh nam, có 5 học sinh xếp loại giỏi, 9 học sinh xếp loại khá, 6 học sinh xếp loại trung bình. Trong 20 học sinh nữ, có 5 học sinh xếp loại giỏi, 11 học sinh xếp loại khá, 4 học sinh xếp loại trung bình. Chọn ngẫu nhiên 4 học sinh từ lớp 11A. Tính xác suất để 4 học sinh được chọn có cả nam, nữ và có cả học sinh xếp loại giỏi, khá, trung bình.
Câu 15:
Gieo đồng thời 2 con xúc xắc. Tìm xác suất để tổng số chấm xuất hiện trên 2 con xúc xắc là 1 số nguyên tố.