Câu hỏi:
23/07/2024 440Cho tam giác ABC, hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC
a) Chứng minh tứ giác BFEC nội tiếp được đường tròn
Trả lời:
Giải bởi Vietjack
a) Xét tứ giác BFEC có:
∠(BFC) = ∠(BEC) = (gt)
Mà 2 góc này cùng nhìn cạnh BC
⇒ Tứ giác BFEC nội tiếp được đường tròn
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC, hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC
c) Chứng minh tứ giác ABDC nội tiếp được đường tròn
Xem đáp án »
20/07/2024
3,032
Câu 2:
Cho tam giác ABC, hai đường cao BE và CF cắt nhau tại H. Gọi D là điểm đối xứng của H qua trung điểm M của BC
b) Chứng minh AB.AF = AC.AE
Xem đáp án »
18/07/2024
419