Câu hỏi:
18/07/2024 141
Cho một tam giác cân có độ dài hai cạnh (không bằng nhau) là 2 cm và 5 cm. Chu vi của tam giác đó là:
Cho một tam giác cân có độ dài hai cạnh (không bằng nhau) là 2 cm và 5 cm. Chu vi của tam giác đó là:
A. 9 cm;
B. 10 cm;
C. 11 cm;
D. 12 cm.
Trả lời:
Đáp án đúng là: D
Giả sử tam giác ABC cân có AB = 2 cm và BC = 5 cm.
Áp dụng bất đẳng thức cho tam giác ABC ta có:
BC – AB < AC < BC + AB
Hay 5 – 2 < AC < 5 + 2
Suy ra 3 < AC < 7 (*)
Vì tam giác ABC là tam giác cân (giả thiết)
Mà AB = 2 cm và BC = 5 cm nên không thể cân tại B.
Do đó có hai trường hợp có thể xảy ra:
• Trường hợp 1: DABC cân tại A.
Suy ra AB = AC.
Mà AB = 2 cm nên AC = 2 cm (không thỏa mãn điều kiện (*))
Nên AB = 2 cm hoặc AB = 5 cm (2)
• Trường hợp 2: DABC cân tại C.
Suy ra CA = CB.
Mà BC = 5 cm nên AC = 5 cm (thỏa mãn điều kiện (*))
Vậy AC = 5 cm.
Khi đó chu vi tam giác ABC là:
AB + AC + BC = 2 + 5 + 5 = 12 (cm).
Ta chọn phương án D.
Đáp án đúng là: D
Giả sử tam giác ABC cân có AB = 2 cm và BC = 5 cm.
Áp dụng bất đẳng thức cho tam giác ABC ta có:
BC – AB < AC < BC + AB
Hay 5 – 2 < AC < 5 + 2
Suy ra 3 < AC < 7 (*)
Vì tam giác ABC là tam giác cân (giả thiết)
Mà AB = 2 cm và BC = 5 cm nên không thể cân tại B.
Do đó có hai trường hợp có thể xảy ra:
• Trường hợp 1: DABC cân tại A.
Suy ra AB = AC.
Mà AB = 2 cm nên AC = 2 cm (không thỏa mãn điều kiện (*))
Nên AB = 2 cm hoặc AB = 5 cm (2)
• Trường hợp 2: DABC cân tại C.
Suy ra CA = CB.
Mà BC = 5 cm nên AC = 5 cm (thỏa mãn điều kiện (*))
Vậy AC = 5 cm.
Khi đó chu vi tam giác ABC là:
AB + AC + BC = 2 + 5 + 5 = 12 (cm).
Ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC nhọn, hai đường cao BM và CN. Trên tia đối của tia BM, lấy điểm P sao cho BP = AC. Trên tia đối của tia CN, lấy điểm Q sao cho CQ = AB. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC nhọn, hai đường cao BM và CN. Trên tia đối của tia BM, lấy điểm P sao cho BP = AC. Trên tia đối của tia CN, lấy điểm Q sao cho CQ = AB. Khẳng định nào sau đây đúng nhất?
Câu 2:
Cho ∆ABC, điểm M thuộc đoạn thẳng BC sao cho BM = 2MC. Trên tia đối của tia CA, lấy điểm D sao cho CD = CA. Gọi E là giao điểm của AM và BD. Khẳng định nào sau đây sai?
Cho ∆ABC, điểm M thuộc đoạn thẳng BC sao cho BM = 2MC. Trên tia đối của tia CA, lấy điểm D sao cho CD = CA. Gọi E là giao điểm của AM và BD. Khẳng định nào sau đây sai?
Câu 3:
Cho ∆ABC vuông cân tại A. Trên cạnh AB lấy điểm D bất kì (D ≠ A, B), trên tia đối của tia AC, lấy điểm E sao cho AD = AE. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC vuông cân tại A. Trên cạnh AB lấy điểm D bất kì (D ≠ A, B), trên tia đối của tia AC, lấy điểm E sao cho AD = AE. Khẳng định nào sau đây đúng nhất?
Câu 4:
Cho ∆ABC có , . Vẽ đường trung trực d của cạnh BC và d cắt BC tại M. Gọi E là điểm thuộc d (E nằm bên trong ∆ABC) sao cho . Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có , . Vẽ đường trung trực d của cạnh BC và d cắt BC tại M. Gọi E là điểm thuộc d (E nằm bên trong ∆ABC) sao cho . Khẳng định nào sau đây đúng nhất?
Câu 5:
Cho một chiếc thang dựa vào tường. Biết độ nghiêng của chiếc thang đó so với mặt đất là 57°, khi đó độ nghiêng của chiếc thang đó so với bức tường là:
Cho một chiếc thang dựa vào tường. Biết độ nghiêng của chiếc thang đó so với mặt đất là 57°, khi đó độ nghiêng của chiếc thang đó so với bức tường là:
Câu 7:
Cho ∆ABC có AB < AC, lấy điểm E trên cạnh CA sao cho CE = BA. Các đường trung trực của các đoạn thẳng BE và CA cắt nhau tại I. Chọn khẳng định sai.
Cho ∆ABC có AB < AC, lấy điểm E trên cạnh CA sao cho CE = BA. Các đường trung trực của các đoạn thẳng BE và CA cắt nhau tại I. Chọn khẳng định sai.
Câu 8:
Cho ∆ABC vuông tại A (AB < AC). Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC vuông tại A (AB < AC). Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Khẳng định nào sau đây đúng nhất?
Câu 9:
Cho ∆ABC cân tại A. Vẽ tia Ax // BC như hình bên.
Lấy điểm O trên tia Ax, điểm M trên AB và điểm N trên AC sao cho . Hỏi ∆OMN là tam giác gì?
Cho ∆ABC cân tại A. Vẽ tia Ax // BC như hình bên.
Lấy điểm O trên tia Ax, điểm M trên AB và điểm N trên AC sao cho . Hỏi ∆OMN là tam giác gì?
Câu 10:
∆ABC có . Gọi O là trung điểm của BC. Vẽ BD ⊥ AO, CE ⊥ AO (D, E thuộc đường thẳng AO). So sánh AB và .
∆ABC có . Gọi O là trung điểm của BC. Vẽ BD ⊥ AO, CE ⊥ AO (D, E thuộc đường thẳng AO). So sánh AB và .
Câu 11:
Cho tam giác ABC (AC < BC), a là đường trung trực của đoạn thẳng AB. Lấy điểm M (M khác trung điểm của AB) nằm trên đường thẳng a.
So sánh độ dài của MA + MC với độ dài đoạn BC.
Cho tam giác ABC (AC < BC), a là đường trung trực của đoạn thẳng AB. Lấy điểm M (M khác trung điểm của AB) nằm trên đường thẳng a.
So sánh độ dài của MA + MC với độ dài đoạn BC.
Câu 12:
Cho các phát biểu:
(I) Ba đường trung tuyến của một tam giác đồng quy tại một điểm.
(II) Ba đường phân giác của một tam giác đồng quy tại một điểm.
(III) Ba đường trung trực của một tam giác đồng quy tại một điểm.
(IV) Ba đường cao của một tam giác đồng quy tại một điểm.
Số các phát biểu đúng là:
Cho các phát biểu:
(I) Ba đường trung tuyến của một tam giác đồng quy tại một điểm.
(II) Ba đường phân giác của một tam giác đồng quy tại một điểm.
(III) Ba đường trung trực của một tam giác đồng quy tại một điểm.
(IV) Ba đường cao của một tam giác đồng quy tại một điểm.
Số các phát biểu đúng là:
Câu 13:
Giao điểm của ba đường trung tuyến trong một tam giác được gọi là gì?
Câu 14:
Cho ∆ABC vuông tại A có . Kẻ AH ⊥ BC tại H và tia phân giác AD của (D ∈ BC). Trên cạnh AC lấy điểm E sao cho AE = AH. Trên tia đối của tia HA lấy điểm F sao cho HF = EC. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC vuông tại A có . Kẻ AH ⊥ BC tại H và tia phân giác AD của (D ∈ BC). Trên cạnh AC lấy điểm E sao cho AE = AH. Trên tia đối của tia HA lấy điểm F sao cho HF = EC. Khẳng định nào sau đây đúng nhất?