Câu hỏi:

28/06/2024 230

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC, CD.

a) Chứng minh rằng SC // (MNP).

b) Xác định giao tuyến của mặt phẳng (MNP) với mặt phẳng (SCD) và giao điểm Q của đường thẳng SD với mặt phẳng (MNP).

c) Xác định giao điểm E của đường thẳng SA với mặt phẳng (MNP).

d) Tính tỉ số SESA.

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC, CD.  a) Chứng minh rằng SC // (MNP).  b) Xác định giao tuyến của mặt phẳng (MNP) với mặt phẳng (SCD) và giao điểm Q của đường thẳng SD với mặt phẳng (MNP).  c) Xác định giao điểm E của đường thẳng SA với mặt phẳng (MNP).  d) Tính tỉ số  . (ảnh 1)

a) Vì M, N lần lượt là trung điểm của các cạnh SB, BC nên MN là đường trung bình của tam giác SBC, do đó MN // SC. Mà MN ⊂ (MNP).

Từ đó suy ra SC // (MNP).

b) Gọi Q là trung điểm của SD, mà P là trung điểm của CD nên PQ là đường trung bình của tam giác SCD nên SC // QP.

Hai mặt phẳng (MNP) và (SCD) có điểm P chung và MN // SC nên giao tuyến của hai mặt phẳng (MNP) và (SCD) là đường thẳng QP. Đồng thời, Q là giao điểm của đường thẳng SD với mặt phẳng (MNP).

c) Trong mặt phẳng (ABCD), gọi I là giao điểm của AC và NP.

Trong mặt phẳng (SAC), lấy E thuộc SA sao cho IE // SC.

Khi đó, ta có I ∈ (MNP) và IE // MN nên E ∈ (MNP).

Vậy E là giao điểm của SA với mặt phẳng (MNP).

d) Gọi O là giao điểm của AC và BD, suy ra O là trung điểm của AC và BD.

Ta có NP là đường trung bình của tam giác BCD nên NP // BD hay NI // BO.

Trong tam giác BOC có NI // BO và N là trung điểm của BC nên NI là đường trung bình của tam giác BOC, suy ra I là trung điểm của OC. Khi đó CICO=12. Suy ra CICA=14.

Xét tam giác SAC, ta có IE // SC nên SESA=CICA=14.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là hình bình hành. Trên cạnh SA lấy điểm M sao cho MA = 2MS. Mặt phẳng (CDM) cắt SB tại N. Tỉ số SNSB bằng:

A. 12.

B. 13.

C. 23.

D. 34.

Xem đáp án » 23/07/2024 723

Câu 2:

Cho tứ diện ABCD. Trên cạnh BC lấy điểm M sao cho MB = 2MC. Mặt phẳng (P) đi qua M và song song với mặt phẳng (ABD) cắt cạnh AC tại N. Tỉ số ANNC bằng:

A. 12.

B. 1.

C. 2.

D. 3.

Xem đáp án » 15/07/2024 152

Câu 3:

Cho hình chóp S.ABCD. Gọi M là trung điểm của cạnh SD.

a) Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD).

b) Xác định giao điểm của đường thẳng BM với mặt phẳng (SAC).

c) Xác định giao tuyến của mặt phẳng (MBC) với các mặt phẳng (SAB) và (SAD).

Xem đáp án » 22/07/2024 148

Câu 4:

Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P lần lượt là trung điểm của AD, B'C', DD'.

a) Chứng minh rằng ADC'B' là hình bình hành.

b) Chứng minh rằng BD // (AB'D'), MN // (AB'D').

c) Chứng minh rằng (MNP) // (AB'D') và BD // (MNP).

d*) Xác định giao tuyến của mặt phẳng (MNP) với các mặt của hình hộp.

e*) Lấy một đường thẳng cắt ba mặt phẳng (AB'D'), (MNP), (C'BD) lần lượt tại I, J, H. Tính tỉ số IJJH.

Xem đáp án » 18/07/2024 118

Câu 5:

Cho mặt phẳng (P), ba điểm A, B, C không thẳng hàng và không nằm trên (P). Chứng minh rằng nếu ba đường thẳng AB, BC, CA cắt mặt phẳng (P) lần lượt tại các điểm M, N, P thì M, N, P thẳng hàng.

Xem đáp án » 22/07/2024 98

Câu 6:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD; P, Q lần lượt thuộc các cạnh CD, BC (P, Q không trùng các đỉnh B, C, D). Chứng minh rằng nếu M, N, P, Q cùng thuộc một mặt phẳng thì PQ song song với BD.

Xem đáp án » 16/07/2024 95

Câu 7:

Vẽ hình biểu diễn của một số đồ vật có dạng hình chóp, hình lăng trụ, ... trong lớp học.

Xem đáp án » 21/07/2024 93

Câu 8:

Cho bốn điểm A, B, C, D không cùng thuộc một mặt phẳng. Khẳng định nào sau đây là sai?

A. Bốn điểm A, B, C, D đã cho đôi một khác nhau.

B. Không có ba điểm nào trong bốn điểm A, B, C, D là thẳng hàng.

C. Hai đường thẳng AC và BD song song với nhau.

D. Hai đường thẳng AC và BD không có điểm chung.

Xem đáp án » 17/07/2024 90

Câu 9:

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AD; P, Q lần lượt thuộc các cạnh CD, BC (P, Q không là trung điểm của CD, CB). Chứng minh rằng nếu M, N, P, Q cùng thuộc một mặt phẳng thì ba đường thẳng MQ, NP và AC cùng đi qua một điểm.

Xem đáp án » 01/07/2024 84

Câu 10:

Cho tứ diện ABCD. Trên cạnh CD lấy hai điểm M và N khác nhau. Chứng minh rằng các đường thẳng AM và BN không cắt nhau.

Xem đáp án » 21/07/2024 79

Câu 11:

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Chứng minh rằng AM // (A'NC).

Xem đáp án » 23/07/2024 57

Câu hỏi mới nhất

Xem thêm »
Xem thêm »