Câu hỏi:

22/07/2024 135

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Tìm giao tuyến của các mặt phẳng:

a) (SAD)(SBC);

b) (SAB)(MDC), với M là một điểm bất kì thuộc cạnh SA.

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Tìm giao tuyến của các mặt phẳng: a) (SAD) và (SBC); b) (SAB) và (MDC), với M là một điểm bất kì thuộc cạnh SA. (ảnh 1)

a) Ta có S (SAD) và S (SBC) nên S (SAD) ∩ (SBC),

Mặt khác, AD (SAD), BC (SBC) và AD // BC (do ABCD là hình bình hành)

Suy ra (SAD) ∩ (SBC) = d với d là đường thẳng đi qua S, d //AD // BC.

b) Ta có M SA, SA (SAB) nên M (SAB);

Lại có M (MDC)

Nên M (SAB) ∩ (MDC).

Ta có AB (SAB), DC (MDC) và AB // DC (do ABCD là hình bình hành).

Suy ra (SAB) ∩ (MDC) = Mx với Mx // AB // DC.

Gọi N là giao điểm của SB và Mx.

Khi đó (SAB) ∩ (MDC) = MN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ diện ABCD. Gọi M, N lần lượt là các điểm thuộc các cạnh AB, AC sao cho AMAB=ANAC,  I; J lần lượt là trung điểm của BD, CD.

a) Chứng minh rằng MN // BC.

b) Tứ giác MNJI là hình . Tìm điểu kiện để tứ giác MNJI là hình bình hành.

Xem đáp án » 16/07/2024 159

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là điểm bất kì thuộc đoạn thẳng SD.

a) Tìm các giao tuyến: d1 = (SAB) ∩ (SCD); d2 = (SCD) ∩ (MAB).

b) Chứng minh d1 // d2.

Xem đáp án » 18/07/2024 157

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AD. Gọi IJ lần lượt là trọng tâm của các tam giác SADSBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD tại P, Q.

a) Chứng minh MN song song với PQ.

b) Gọi E là giao điểm của AMBP, F là giao điểm của CQDN. Chứng minh EF song song với MNPQ.

Xem đáp án » 21/07/2024 90

Câu hỏi mới nhất

Xem thêm »
Xem thêm »