Câu hỏi:
13/07/2024 423
Cho hàm số f(x) có đạo hàm tại mọi điểm thuộc tập xác định, hàm số g(x) được xác định bởi g(x) = [f(x)]2 + 2xf(x). Biết f’(0) = f(0) = 1. Tính g’(0).
Cho hàm số f(x) có đạo hàm tại mọi điểm thuộc tập xác định, hàm số g(x) được xác định bởi g(x) = [f(x)]2 + 2xf(x). Biết f’(0) = f(0) = 1. Tính g’(0).
Trả lời:
Ta có: g’(x) = 2f(x)f’(x) + (2x)’f(x) + 2xf’(x).
= 2f(x)f’(x) + 2f(x) + 2xf’(x).
Vậy g’(0) = 2f(0).f’(0) + 2.f(0) + 2.0.f’(0)
= 2.1.1 + 2.1 + 0 = 4.
Ta có: g’(x) = 2f(x)f’(x) + (2x)’f(x) + 2xf’(x).
= 2f(x)f’(x) + 2f(x) + 2xf’(x).
Vậy g’(0) = 2f(0).f’(0) + 2.f(0) + 2.0.f’(0)
= 2.1.1 + 2.1 + 0 = 4.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số f(x) = cos3x. Khi đó f’(x) bằng:
A. sin3x.
B. –sin3x.
C. –3sin3x.
D. 3sin3x.
Cho hàm số f(x) = cos3x. Khi đó f’(x) bằng:
A. sin3x.
B. –sin3x.
C. –3sin3x.
D. 3sin3x.
Câu 2:
Giải bất phương trình f’(x) < 0, biết:
a) f(x) = x3 – 9x2 + 24x; b) f(x) = –log5(x + 1).
Giải bất phương trình f’(x) < 0, biết:
a) f(x) = x3 – 9x2 + 24x; b) f(x) = –log5(x + 1).
Câu 3:
Một chất điểm chuyển động theo phương trình trong đó t > 0, t tính theo giây, s(t) tính bằng mét. Tính vận tốc tức thời của chất điểm tại thời điểm t = 5 (s).
Một chất điểm chuyển động theo phương trình trong đó t > 0, t tính theo giây, s(t) tính bằng mét. Tính vận tốc tức thời của chất điểm tại thời điểm t = 5 (s).
Câu 5:
Cho hàm số có đồ thị (C). Viết phương trình tiếp tuyến d của đồ thị ( C) trong mỗi trường hợp sau:
a) d song song với đường thẳng y = 5x – 2;
b) d vuông góc với đường thẳng y = –20x + 1.
Cho hàm số có đồ thị (C). Viết phương trình tiếp tuyến d của đồ thị ( C) trong mỗi trường hợp sau:
a) d song song với đường thẳng y = 5x – 2;
b) d vuông góc với đường thẳng y = –20x + 1.
Câu 7:
Cho hàm số f(x) = e2x. Khi đó f’(x) bằng:
A. e2x.
B. 2ex.
C. 2xe2x.
D. 2e2x.
Cho hàm số f(x) = e2x. Khi đó f’(x) bằng:
A. e2x.
B. 2ex.
C. 2xe2x.
D. 2e2x.
Câu 8:
Cho hàm số y = x2 + 3x có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có:
a) Hoành độ bằng –1; b) Tung độ bằng 4.
Cho hàm số y = x2 + 3x có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) tại điểm có:
a) Hoành độ bằng –1; b) Tung độ bằng 4.
Câu 9:
Năm 2010, dân số ở một tỉnh D là 1 038 229 người. Tính đến năm 2015, dân số của tỉnh đó là 1 153 600 người. Cho biết dân số của tỉnh D được ước tính theo công thức S(N) = AeNr (trong đó A là dân số của năm lấy làm mốc, S là dân số sau N năm, r là tỉ lệ tăng dân số hàng năm được làm tròn đến hàng phần nghìn). Tốc độ gia tăng dân số (người/năm) vào thời điểm sau N năm kể từ năm 2010 được xác định bởi hàm số S’(N). Tính tốc độ gia tăng dân số của tỉnh D vào năm 2023 (làm tròn kết quả đến hàng đơn vị theo đơn vị người/năm), biết tỉ lệ tăng dân số hàng năm không đổi.
Năm 2010, dân số ở một tỉnh D là 1 038 229 người. Tính đến năm 2015, dân số của tỉnh đó là 1 153 600 người. Cho biết dân số của tỉnh D được ước tính theo công thức S(N) = AeNr (trong đó A là dân số của năm lấy làm mốc, S là dân số sau N năm, r là tỉ lệ tăng dân số hàng năm được làm tròn đến hàng phần nghìn). Tốc độ gia tăng dân số (người/năm) vào thời điểm sau N năm kể từ năm 2010 được xác định bởi hàm số S’(N). Tính tốc độ gia tăng dân số của tỉnh D vào năm 2023 (làm tròn kết quả đến hàng đơn vị theo đơn vị người/năm), biết tỉ lệ tăng dân số hàng năm không đổi.
Câu 10:
Cho f = f(x), g = g(x) có đạo hàm tại điểm x thuộc khoảng xác định. Phát biểu nào sau đây là đúng?
A. (fg)’ = fg’.
B. (fg)’ = f’g’.
C. (fg)’ = f’g – fg’.
D. (fg)’ = f’g + fg’.
Cho f = f(x), g = g(x) có đạo hàm tại điểm x thuộc khoảng xác định. Phát biểu nào sau đây là đúng?
A. (fg)’ = fg’.
B. (fg)’ = f’g’.
C. (fg)’ = f’g – fg’.
D. (fg)’ = f’g + fg’.
Câu 11:
Một tài xế đang lái xe ô tô, ngay khi phát hiện có vật cản phía trước đã phanh gấp lại nhưng vẫn xảy ra va chạm, chiếc ô tô để lại vết trượt dài 20,4 m (được tính từ lúc bắt đầu đạp phanh đến khi xảy ra va chạm). Trong quá trình đạp phanh, ô tô chuyển động theo phương trình trong đó s (m) là độ dài quãng đường đi được sau khi phanh, t(s) thời gian tính từ lúc bắt đầu phanh (0 ≤ t ≤ 4).
a) Tính vận tốc tức thời của ô tô ngay khi đạp phanh. Hãy cho biết xe ô tô trên có chạy quá tốc độ hay không, biết tốc độ giới hạn cho phép là 70 km/h.
Một tài xế đang lái xe ô tô, ngay khi phát hiện có vật cản phía trước đã phanh gấp lại nhưng vẫn xảy ra va chạm, chiếc ô tô để lại vết trượt dài 20,4 m (được tính từ lúc bắt đầu đạp phanh đến khi xảy ra va chạm). Trong quá trình đạp phanh, ô tô chuyển động theo phương trình trong đó s (m) là độ dài quãng đường đi được sau khi phanh, t(s) thời gian tính từ lúc bắt đầu phanh (0 ≤ t ≤ 4).
a) Tính vận tốc tức thời của ô tô ngay khi đạp phanh. Hãy cho biết xe ô tô trên có chạy quá tốc độ hay không, biết tốc độ giới hạn cho phép là 70 km/h.
Câu 12:
Cho f = f(x), g = g(x) có đạo hàm tại điểm x thuộc khoảng xác định và g = g(x) ≠ 0, g’ = g’(x) ≠ 0. Phát biểu nào sau đây là đúng?
A.
B.
C.
D.
Cho f = f(x), g = g(x) có đạo hàm tại điểm x thuộc khoảng xác định và g = g(x) ≠ 0, g’ = g’(x) ≠ 0. Phát biểu nào sau đây là đúng?
A.
B.
C.
D.
Câu 13:
Một mạch dao động điện từ LC có lượng điện tích dịch chuyển qua tiết diện thẳng của dây xác định bới hàm số trong đó t > 0, t tính bằng giây, Q tính bằng Coulomb. Tính cường độ dòng điện tức thời I (A) trong mạch tại thời điểm biết I (t) = Q’(t).
Một mạch dao động điện từ LC có lượng điện tích dịch chuyển qua tiết diện thẳng của dây xác định bới hàm số trong đó t > 0, t tính bằng giây, Q tính bằng Coulomb. Tính cường độ dòng điện tức thời I (A) trong mạch tại thời điểm biết I (t) = Q’(t).
Câu 14:
Trong kinh tế học, xét mô hình doanh thu y (đồng) được tính theo số sản phẩm sản xuất ra x (chiếc) theo công thức y = f(x).
Xét giá trị ban đầu x = x0. Đặt Mf(x0) = f(x0 + 1) – f(x0) và gọi giá trị đó là giá trị y–cận biên của x tại x = x0. Giá trị Mf(x0) phản ánh lượng doanh thu tăng thêm khi sản xuất thêm một đơn vị sản phẩm tại mốc sản phẩm x0.
Xem hàm doanh thu y = f(x) như là hàm biến số thực x.
Khi đó Mf(x0) = f(x0 + 1) – f(x0) ≈ f’(x0). Như vậy, đạo hàm f’(x0) cho chúng ta biết (xấp xỉ) lượng doanh thu tăng thêm khi sản xuất thêm một đơn vị sản phẩm tại mốc sản phẩm x0.
Tính doanh thu tăng thêm khi sản xuất thêm một đơn vị sản phẩm tại mốc sản phẩm nếu hàm doanh thu là tại mốc sản phẩm x0 = 10 000.
Trong kinh tế học, xét mô hình doanh thu y (đồng) được tính theo số sản phẩm sản xuất ra x (chiếc) theo công thức y = f(x).
Xét giá trị ban đầu x = x0. Đặt Mf(x0) = f(x0 + 1) – f(x0) và gọi giá trị đó là giá trị y–cận biên của x tại x = x0. Giá trị Mf(x0) phản ánh lượng doanh thu tăng thêm khi sản xuất thêm một đơn vị sản phẩm tại mốc sản phẩm x0.
Xem hàm doanh thu y = f(x) như là hàm biến số thực x.
Khi đó Mf(x0) = f(x0 + 1) – f(x0) ≈ f’(x0). Như vậy, đạo hàm f’(x0) cho chúng ta biết (xấp xỉ) lượng doanh thu tăng thêm khi sản xuất thêm một đơn vị sản phẩm tại mốc sản phẩm x0.
Tính doanh thu tăng thêm khi sản xuất thêm một đơn vị sản phẩm tại mốc sản phẩm nếu hàm doanh thu là tại mốc sản phẩm x0 = 10 000.