Câu hỏi:
21/07/2024 334Cho hai đường tròn (O); (O’) cắt nhau tại A, B. Lẻ đường kính AC của đường tròn (O) và đường kính AD của đường tròn (O’). Chọn khẳng định sai?
A. OO’ =
B. C, B, D thẳng hàng
C. OO’ ⊥AB
D. BC = BD
Trả lời:
Hai đường tròn (O); (O’) cắt nhau tại A và B nên OO’ là đường trung trực của AB
AB (tính chất đường nối tâm) nên đáp án C đúng
Xét đường tròn (O) có AC là đường kính, suy ra ABC vuông tại B hay
= 90o
Xét đường tròn (O) có AD là đường kính, suy ra ABC vuông tại B hay
= 90o
Suy ra = 90o + 90o = 180o hay ba điểm B, C, D thẳng hàng nên đáp án B đúng
Xét tam giác ADC có O là trung điểm đoạn AC và O’ là trung điểm đoạn AD nên OO’ là đường trung bình của tam giác ACD
(tính chất đường trung bình) nên đáp án A đúng
Ta chưa thể kết luận gì về độ dài BC và BD nên đáp án D sai
Nên A, B, C đúng, D sai
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai đường tròn (O1) và (O2) tiếp xúc ngoài tại A và một đường thẳng d tiếp xúc với (O1); (O2) lần lượt tại B, C. Tam giác ABC là:
Câu 2:
Cho đường tròn tâm O bán kính R = 2cm và đường tròn tâm O’ bán kính R’ = 3cm. Biết OO’ = 6cm. Số tiếp tuyến chung của hai đường tròn đã cho là:
Câu 3:
Cho hai đường tròn tiếp xúc ngoài (O; R) và (O’; r) với R > r và OO’ = d. Chọn khẳng định đúng.
Câu 4:
Cho hai đường tròn (O; R) và (O’; R’) (R > R’) tiếp xúc ngoài tại A. Vẽ các bán kính OB // O’D với B, D ở cùng phía nửa mặt phẳng bờ OO’. Đường thẳng DB và OO’ cắt nhau tại I. Tiếp tuyến chung ngoài GH của (O) và (O’) với G, H nằm ở nửa mặt phẳng bờ OO’ không chứa B, D. Tính PI theo R và R’
Câu 5:
Cho nửa đường tròn (O), đường kính AB. Vẽ nửa đường tròn tâm O’ đường kính AO (cùng phía với nửa đường tròn (O)). Một cát tuyến bất kì qua A cắt (O’); (O) lần lượt tại C, D. Nếu BC là tiếp tuyến của nửa đường tròn (O’) thì tính BC theo R (với OA = R)
Câu 6:
Cho hai đường tròn (I; 7cm) và (K; 5cm). Biết IK = 2cm. Quan hệ giữa hai đường tròn là:
Câu 7:
Cho hai đường tròn (O; 6cm) và (O’; 2cm) cắt nhau tại A, B sao cho OA là tiếp tuyến của (O’). Độ dài dây AB là:
Câu 8:
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ các đường kính AOB; AO’C. Gọi DE là tiếp tuyến chung của hai đường tròn (D = 60o và OA = 6cm.
Câu 9:
Cho các đường tròn (A; 10cm), (B; 15cm), (C; 15cm) tiếp xúc ngoài với nhau đôi một. Hai đường tròn (B) và (C) tiếp xúc với nhau tại A’. Đường tròn (A) tiếp xúc với đường tròn (B) và (C) lần lượt tại C’ và B’. Tính diện tích tam giác A’B’C’.
Câu 10:
Cho (O1; 3cm) tiếp xúc ngoài với (O2; 1cm). Vẽ bán kính O1B và O2C song song với nhau cùng thuộc một nửa mặt phẳng bờ O1O2. Gọi D là giao điểm của BC và O1O2. Tính số đo
Câu 11:
Cho hai đường tròn (O; 20cm) và (O’; 15cm) cắt nhau tại A và B. Tính đoạn nối tâm OO’. Biết rằng AB = 24cm và O, O’ nằm cùng phía đối với AB
Câu 12:
Cho đoạn OO’ và điểm A nằm trên đoạn OO’ sao cho OA = 2O’A. Đường tròn (O) bán kính OA và đường tròn (O’) bán kính O’A. Dây AD của đường tròn lớn cắt đường tròn nhỏ tại C. Khi đó:
Câu 13:
Cho hai đường tròn (O; 8cm) và (O’; 6cm) cắt nhau tại A, B sao cho OA là tiếp tuyến của (O’). Độ dài dây AB là:
Câu 14:
Cho hai đường tròn (O; 4cm) và (I; 6cm). Biết OI = 2cm. Tìm vị trí tương đối của hai đường tròn.
Câu 15:
Cho hai đường (O) và (O’) tiếp xúc ngoài tại A. Kẻ các đường kính AOB; AO’C. Gọi DE là tiếp tuyến chung của hai đường tròn (D= 60o và OA = 8cm.