Câu hỏi:
14/07/2024 172Cho đường tròn (O), đường kính AB = 14cm, dây CD có độ dài 12cm vuông góc với AB tại H nằm giữa O và B. Độ dài HA là?
A. 7+√13cm
B. 7-√13cm
C. 7cm
D. 7-2√13cm
Trả lời:
Đáp án A
Xét (O) có AB⊥CD tại H và AB là đường kính nên H là trung điểm của CD
⇒
Vì AB = 14
Áp dụng định lý Pytago cho tam giác vuông OHD ta được:
Khi đó
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O; R) có hai dây AB, CD vuông góc với nhau ở M. Biết AB = 16cm; CD = 12cm; MC = 2cm. Khoảng cách từ tâm O đến dây AB là?
Câu 2:
Cho nửa đường tròn (O), đường kính AB và một dây CD. Kẻ AE và BF vuông góc với CD lần lượt tại E và F. So sánh độ dài CE và DF
Câu 3:
Cho đường tròn (O), đường kính AB = 20cm, dây CD có độ dài 16cm vuông góc với AB tại H nằm giữa O và B. Độ dài HA là?
Câu 4:
Cho đường tròn (O) và một dây CD. Từ O kẻ tia vuông góc với CD tại M, cắt (O; R) tại H. Biết CD = 16cm, MH = 4cm. Bán kính R bằng:
Câu 5:
Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB, BC. Gọi E là giao điểm của CM và DN. So sánh AE và DM
Câu 6:
Cho đường tròn (O), đường kính AB. Kẻ hai dây AC và BD song song. So sánh độ dài AC và BD
Câu 7:
Cho đường tròn (O; 10cm). Dây AB và CD song song, có độ dài lần lượt là 16cm và 12cm. Tính khoảng cách giữa 2 dây
Câu 8:
Cho đường tròn (O; R) có hai dây AB, CD vuông góc với nhau ở M. Biết AB = 10cm; CD = 8cm; MC = 1cm. Bán kinh R và khoảng cách từ tâm O đến dây CD lần lượt là:
Câu 9:
Cho đường tròn (O; R) có hai dây AB, CD bằng nhau và vuông góc với nhau tại I. Giả sử IA = 2cm; IB = 4cm. Tổng khoảng cách từ tâm O đến dây AB, CD là:
Câu 10:
Cho đường tròn (O; 8cm). Dây AB và CD song song, có độ dài lần lượt là 14cm và 10cm. Tính khoảng cách giữa 2 dây
Câu 11:
Cho đường tròn (O; R) có hai dây AB, CD vuông góc với nhau ở M. Biết CD = 8cm; MC = 1cm. Khoảng cách từ tâm O đến dây AB là?
Câu 12:
Cho đường tròn (O; R). Hai dây AB, CD song song với nhau sao cho tâm O nằm trong dải song song tạo bởi AB, CD. Biết khoảng cách giữa hai dây đó bằng 11cm và , CD = 16cm. Tính R
Câu 13:
Cho nửa đường tròn (O), đường kính AB và một dây MN. Kẻ AE và BF vuông góc với MN lần lượt tại E và F. So sánh độ dài OE và OF
Câu 14:
Cho đường tròn (O), đường kính AB. Lấy điểm C là trung điểm đoạn OB. Kẻ dây MN qua C và dây AD//MN. So sánh độ dài AD và MN
Câu 15:
Cho đường tròn (O; R) có hai dây AB, CD vuông góc với nhau ở M. Biết AB = 14cm; CD = 12cm; MC = 2cm. Bán kinh R và khoảng cách từ tâm O đến dây CD lần lượt là: