Câu hỏi:
18/07/2024 331Cho ba vecto . Điều kiện nào sau đây không kết luận được ba vecto đó đồng phẳng?
A. Một trong ba vecto đó bằng
B. Có hai trong ba vecto đó cùng phương
C. Có một vecto không cùng hướng với hai vecto còn lại.
D. Có hai trong ba vecto đó cùng hướng
Trả lời:
Đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC.
Mặt phẳng (BKH) vuông góc với mặt phẳng:
Câu 3:
Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của CD và DD’; G và G’ lần lượt là trọng tâm của hai tứ diện A’D’NM và BCC’D’. Đặt .
Đường thẳng GG’ song song với mặt phẳng (AA’B’B) vì:
Câu 4:
Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC:
Đường thẳng HK vuông góc với mặt phẳng:
Câu 7:
Cho hình hộp ABCD.A’B’C’D’. Gọi M, N lần lượt là trung điểm của CD và DD’; G và G’ lần lượt là trọng tâm của hai tứ diện A’D’NM và BCC’D’. Đặt .
Vecto bằng:
Câu 8:
Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC:
Mặt phẳng (BKH) vuông góc với đường thẳng:
Câu 10:
Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC.
Đường thẳng BH vuông góc với đường thẳng:
Câu 11:
Cho tứ diện ABCD và đặt . Gọi M là trung điểm của CD.
Vecto bằng:
Câu 12:
Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi H và K lần lượt là trực tâm của các tam giác ABC và SBC.
Mặt phẳng (BKH) vuông góc với đường thẳng: