Câu hỏi:
23/07/2024 151
Chỉ số hay độ pH của một dung dịch được tính theo công thức: pH = – log[H+]. Phân tích nồng độ ion hydrogen [H+] trong hai mẫu nước sông, ta có kết quả sau:
Mẫu 1: [H+] = 8 . 10–7; Mẫu 2: [H+] = 2 . 10–9.
Không dùng máy tính cầm tay, hãy so sánh độ pH của hai mẫu nước trên.
Chỉ số hay độ pH của một dung dịch được tính theo công thức: pH = – log[H+]. Phân tích nồng độ ion hydrogen [H+] trong hai mẫu nước sông, ta có kết quả sau:
Mẫu 1: [H+] = 8 . 10–7; Mẫu 2: [H+] = 2 . 10–9.
Không dùng máy tính cầm tay, hãy so sánh độ pH của hai mẫu nước trên.
Trả lời:
Mẫu 1:
pH = – log[H+] = –log(8 . 10–7) = – (log8 + log10–7)
= – log8 – log10–7 = – log8 + 7log10
= – log23 + 7 = – 3log2 + 7.
Mẫu 2:
pH = – log[H+] = –log(2 . 10–9) = – (log2 – log10–9)
= – log2 – log10–9 = – log2 + 9log10
= – log2 + 9.
Vì 3log2 > log2 nên – 3log2 < – log2
Suy ra – 3log2 + 7 < – log2 + 7
Hay – 3log2 + 7 < – log2 + 9
Do đó độ pH của mẫu 1 nhỏ hơn độ pH của mẫu 2.
Mẫu 1:
pH = – log[H+] = –log(8 . 10–7) = – (log8 + log10–7)
= – log8 – log10–7 = – log8 + 7log10
= – log23 + 7 = – 3log2 + 7.
Mẫu 2:
pH = – log[H+] = –log(2 . 10–9) = – (log2 – log10–9)
= – log2 – log10–9 = – log2 + 9log10
= – log2 + 9.
Vì 3log2 > log2 nên – 3log2 < – log2
Suy ra – 3log2 + 7 < – log2 + 7
Hay – 3log2 + 7 < – log2 + 9
Do đó độ pH của mẫu 1 nhỏ hơn độ pH của mẫu 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Ta coi năm lấy làm mốc để tính dân số của một vùng (hoặc một quốc gia) là năm 0. Khi đó, dân số của quốc gia đó ở năm thứ t là hàm số theo biến t được cho bởi công thức: S = A.ert, trong đó A là dân số của vùng (hoặc quốc gia) đó ở năm 0 và r là tỉ lệ tăng dân số hằng năm (Nguồn: Giải tích 12, NXBGD Việt Nam, 2021). Biết rằng dân số Việt Nam năm 2021 ước tính là 98 564 407 người và tỉ lẹ̣ tăng dân số 0,93%/năm (Nguồn: https://danso.org/viet–nam). Giả sử tỉ lệ tăng dân số hằng năm là như nhau tính từ năm 2021, nêu dự đoán dân số Việt Nam năm 2030 (làm tròn kết quả đến hàng đơn vị).
Ta coi năm lấy làm mốc để tính dân số của một vùng (hoặc một quốc gia) là năm 0. Khi đó, dân số của quốc gia đó ở năm thứ t là hàm số theo biến t được cho bởi công thức: S = A.ert, trong đó A là dân số của vùng (hoặc quốc gia) đó ở năm 0 và r là tỉ lệ tăng dân số hằng năm (Nguồn: Giải tích 12, NXBGD Việt Nam, 2021). Biết rằng dân số Việt Nam năm 2021 ước tính là 98 564 407 người và tỉ lẹ̣ tăng dân số 0,93%/năm (Nguồn: https://danso.org/viet–nam). Giả sử tỉ lệ tăng dân số hằng năm là như nhau tính từ năm 2021, nêu dự đoán dân số Việt Nam năm 2030 (làm tròn kết quả đến hàng đơn vị).
Câu 3:
Cô Yên gửi 10 triệu đồng vào ngân hàng theo hình thức lãi kép có kì hạn là 12 tháng với lãi suất 6% /năm. Giả sử qua các năm thì lãi suất không thay đổi và cô Yên không gửi thêm tiền vào mỗi năm. Để biết sau y (năm) thì tổng số tiền cả vốn và lãi có được là x (đồng), cô Yên sử dụng công thức . Hỏi sau ít nhất bao nhiêu năm thì cô Yên có thể rút ra số tiền 15 triệu đồng từ tài khoản tiết kiện đó (làm tròn kết quả đến hàng đơn vị).
Cô Yên gửi 10 triệu đồng vào ngân hàng theo hình thức lãi kép có kì hạn là 12 tháng với lãi suất 6% /năm. Giả sử qua các năm thì lãi suất không thay đổi và cô Yên không gửi thêm tiền vào mỗi năm. Để biết sau y (năm) thì tổng số tiền cả vốn và lãi có được là x (đồng), cô Yên sử dụng công thức . Hỏi sau ít nhất bao nhiêu năm thì cô Yên có thể rút ra số tiền 15 triệu đồng từ tài khoản tiết kiện đó (làm tròn kết quả đến hàng đơn vị).
Câu 4:
d ) Quan sát đồ thị hàm số y = log2x, nêu nhận xét về:
•
• Sự biến thiên của hàm số y = log2x và lập bảng biến thiên của hàm số đó.
d ) Quan sát đồ thị hàm số y = log2x, nêu nhận xét về:
•
• Sự biến thiên của hàm số y = log2x và lập bảng biến thiên của hàm số đó.
Câu 5:
Một doanh nghiệp gửi ngân hàng 1 tỉ đồng với kì hạn 1 năm, lãi suất 6,2%/năm. Giả sử trong suốt n năm (n ∈ ℕ*), doanh nghiệp đó không rút tiền ra và số tiền lãi sau mỗi năm sẽ được nhập vào vốn ban đầu. Biết rằng lãi suất không thay đổi trong thời gian này.
Mối liên hệ giữa số tiền doanh nghiệp đó có được (cả gốc và lãi) với số năm gửi ngân hàng gợi nên hàm số nào trong toán học?
Một doanh nghiệp gửi ngân hàng 1 tỉ đồng với kì hạn 1 năm, lãi suất 6,2%/năm. Giả sử trong suốt n năm (n ∈ ℕ*), doanh nghiệp đó không rút tiền ra và số tiền lãi sau mỗi năm sẽ được nhập vào vốn ban đầu. Biết rằng lãi suất không thay đổi trong thời gian này.
Mối liên hệ giữa số tiền doanh nghiệp đó có được (cả gốc và lãi) với số năm gửi ngân hàng gợi nên hàm số nào trong toán học?
Câu 6:
Các nhà tâm lí học sử dụng mô hình hàm số mũ để mô phỏng quá trình học tập của một học sinh như sau: f(t) = c(1 – e–kt), trong đó c là tổng số đơn vị kiến thức học sinh phải học, k (kiến thức/ngày) là tốc độ tiếp thu của học sinh, t (ngày) là thời gian học và f(t) là số đơn vị kiến thức học sinh đã học được (Nguồn: R.I. Charles et al., Algebra 2, Pearson). Giả sử một em học sinh phải tiếp thu 25 đơn vị kiến thức mới. Biết rằng tốc độ tiếp thu của em học sinh là k = 0,2. Hỏi em học sinh sẽ học được (khoảng) bao nhiêu đơn vị kiến thức mới sau 2 ngày? Sau 8 ngày? (Làm tròn kết quả đến hàng đơn vị).
Các nhà tâm lí học sử dụng mô hình hàm số mũ để mô phỏng quá trình học tập của một học sinh như sau: f(t) = c(1 – e–kt), trong đó c là tổng số đơn vị kiến thức học sinh phải học, k (kiến thức/ngày) là tốc độ tiếp thu của học sinh, t (ngày) là thời gian học và f(t) là số đơn vị kiến thức học sinh đã học được (Nguồn: R.I. Charles et al., Algebra 2, Pearson). Giả sử một em học sinh phải tiếp thu 25 đơn vị kiến thức mới. Biết rằng tốc độ tiếp thu của em học sinh là k = 0,2. Hỏi em học sinh sẽ học được (khoảng) bao nhiêu đơn vị kiến thức mới sau 2 ngày? Sau 8 ngày? (Làm tròn kết quả đến hàng đơn vị).
Câu 7:
b) Trong mặt phẳng tọa độ Oxy, biểu diễn điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; log2x) với x ∈ (0; +∞) và nối lại, ta được đồ thị hàm số y = log2x (Hình 6).
b) Trong mặt phẳng tọa độ Oxy, biểu diễn điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; log2x) với x ∈ (0; +∞) và nối lại, ta được đồ thị hàm số y = log2x (Hình 6).
Câu 8:
c) Cho biết tọa độ giao điểm đồ thị hàm số với trục hoành và vị trí của đồ thị hàm số đó so với trục tung.
c) Cho biết tọa độ giao điểm đồ thị hàm số với trục hoành và vị trí của đồ thị hàm số đó so với trục tung.
Câu 10:
Tìm tập xác định của các hàm số:
a) y = 12x;
b) y = log5(2x – 3);
c)
Tìm tập xác định của các hàm số:
a) y = 12x;
b) y = log5(2x – 3);
c)
Câu 11:
d) Quan sát đồ thị hàm số nêu nhận xét về:
•
• Sự biến thiên của hàm số và lập bảng biến thiên của hàm số đó.
d) Quan sát đồ thị hàm số nêu nhận xét về:
•
• Sự biến thiên của hàm số và lập bảng biến thiên của hàm số đó.
Câu 13:
c) Cho biết tọa độ giao điểm của đồ thị hàm số với trục tung và vị trí của đồ thị hàm số đó so với trục hoành.
c) Cho biết tọa độ giao điểm của đồ thị hàm số với trục tung và vị trí của đồ thị hàm số đó so với trục hoành.
Câu 14:
c) Cho biết tọa độ giao điểm của đồ thị hàm số y = 2x với trục tung và vị trí của đồ thị hàm số đó so với trục hoành.
c) Cho biết tọa độ giao điểm của đồ thị hàm số y = 2x với trục tung và vị trí của đồ thị hàm số đó so với trục hoành.
Câu 15:
c) Cho biết tọa độ giao điểm đồ thị hàm số y = log2x với trục hoành và vị trí của đồ thị hàm số đó so với trục tung.
c) Cho biết tọa độ giao điểm đồ thị hàm số y = log2x với trục hoành và vị trí của đồ thị hàm số đó so với trục tung.