Câu hỏi:
17/07/2024 142Biết tổng các hệ số của ba số hạng đầu trong khai triển bằng 49. Khi đó hệ số của số hạng chứa trong khai triển đó là:
A.60.
B.60.
C.-160.
D.-160
Trả lời:
Đáp án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Khi gọi điện thoại một khách hàng đã quên mất ba chữ số cuối người đó chỉ nhớ rằng đó là ba số khác nhau. Tính xác suất để người đó thực hiện được một cuộc điện thoại.
Câu 2:
Một tổ có 5 học sinh nữ và 6 học sinh nam. Xếp ngẫu nhiên các học sinh trên để chụp ảnh. Tính xác suất không có hai bạn nữ nào đứng kề nhau.
Câu 3:
Cho A là tập hợp gồm 20 điểm phân biệt. Số đoạn thẳng có hai đầu mút phân biệt thuộc tập A là
Câu 4:
Bốn người đàn ông, hai người đàn bà và một đứa trẻ được xếp vào bảy chiếc ghế đặt quanh bàn tròn. Hỏi có bao nhiêu cách sắp xếp sao cho đứa trẻ ngồi giữa hai người đàn ông.
Câu 5:
Gọi A là tập các số tự nhiên có 3 chữ số đôi một khác nhau. Lấy ngẫu nhiên từ A ra hai số. Tính xác suất để lấy được hai số mà các chữ số có mặt ở hai số đó giống nhau.
Câu 7:
Một tổ gồm 5 học sinh nam và 3 học sinh nữ. Tính số cách chọn cùng lúc 3 học sinh trong tổ đi tham gia chương trình thiện nguyện
Câu 9:
Cho tập A={3;4;5;6}. Tìm số các số tự nhiên có bốn chữ số được thành lập từ tập A sao cho trong mỗi số tự nhiên đó, hai chữ số 3 và 4 mỗi chữ số có mặt nhiều nhất 2 lần, còn hai chữ số 5 và 6 mỗi chữ số có mặt không quá 1 lần.
Câu 10:
Gọi S là tập hợp tất cả các số tự nhiên gồm 9 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ S. Tính xác suất để số được chọn có đúng 4 chữ số lẻ và chữ số 0 đứng giữa hai chữ số lẻ (Các chữ số liền trước và liền sau của chữ số 0 là các chữ số lẻ).
Câu 11:
Biết n là số nguyên dương thỏa mãn , số hạng chứa trong khai triển
Câu 12:
Trong chương trình giao lưu gồm có 15 người ngồi vào 15 ghế theo một hàng ngang. Giả sử người dẫn chương trình chọn ngẫu nhiên 3 người trong 15 người để giao lưu với khán giả. Xác suất để trong 3 người được chọn đó không có 2 người ngồi kề nhau
Câu 13:
Từ 10 điểm phân biệt trong mặt phẳng, có thể tạo ra bao nhiêu véctơ khác véctơ ?
Câu 14:
Xếp ngẫu nhiên tám học sinh gồm bốn học sinh nam (trong đó có Hoàng và Nam) cùng bốn học sinh nữ (trong đó có Lan) thành một hàng ngang. Xác suất để trong tám học sinh trên không có hai học sinh cùng giới đúng cạnh nhau, đồng thời Lan đứng cạnh Hoàng và Nam là