Đề thi vào 10 môn Toán TP Hồ Chí Minh chính thức (2022) có đáp án

Đề thi vào 10 môn Toán TP Hồ Chí Minh chính thức (2022 + các năm) có đáp án chi tiết giúp học sinh ôn luyện để đạt điểm cao trong kì thi tuyển sinh vào lớp 10. Mời các bạn cùng đón xem:

1 870 27/02/2024
Mua tài liệu


Chỉ 150k mua trọn bộ Đề thi vào 10 môn Toán bản word có lời giải chi tiết:

B1: Gửi phí vào tài khoản 0711000255837 - NGUYEN THANH TUYEN - Ngân hàng Vietcombank (QR)

B2: Nhắn tin tới zalo Vietjack Official - nhấn vào đây để thông báo và nhận giáo án.

Xem thử tài liệu tại đây: Link tài liệu

Đề thi vào 10 môn Toán TP Hồ Chí Minh chính thức (các năm) có đáp án

Phòng Giáo dục và Đào tạo .....

Đề khảo sát chất lượng Toán vào 10

Năm học 2022 - 2023

Môn: Toán

Thời gian làm bài: 120 phút

Đề thi vào 10 môn Toán TP Hồ Chí Minh có đáp án - năm 2022

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

ĐÁP ÁN ĐỀ THI VÀO 10 MÔN TOÁN TP HCM - 2022-2023

Bài 1:

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

Bài 2:

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

Bài 3:

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

Bài 4:

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

Bài 5:

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

Bài 6:

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

Bài 7:

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

Bài 8:

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

Phòng Giáo dục và Đào tạo .....

Đề khảo sát chất lượng Toán vào 10

Năm học 2020 - 2021

Môn: Toán

Thời gian làm bài: 120 phút

Đề thi vào 10 môn Toán TP Hồ Chí Minh có đáp án - năm 2020

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

Phòng Giáo dục và Đào tạo .....

Đề khảo sát chất lượng Toán vào 10

Năm học 2019 - 2020

Môn: Toán

Thời gian làm bài: 120 phút

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh có đáp án (Tự luận) - năm 2019

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

TOP 6 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh các năm có đáp án (Tự luận) (ảnh 1)

Phòng Giáo dục và Đào tạo .....

Đề khảo sát chất lượng Toán vào 10

Năm học 2016 - 2017

Môn: Toán

Thời gian làm bài: 120 phút

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh có đáp án (Tự luận) - năm 2016

Bài 1. (2 điểm)

Giải các phương trình và hệ phương trình sau

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Bài 2. (1,5 điểm)

a) Vẽ đồ thị (P) của hàm số y=-x24 và đường thẳng (D): y=x2-2 trên cùng một hệ trục tọa độ

b) Tìm tọa độ các giao điểm của (P) và (D) ở câu trên bằng phép tính

Bài 3. (1,5 điểm)

a) Thu gọn biểu thức A=2-31+4+23+2+31-4-23

b) Ông Sáu gửi một số tiền vào ngân hàng theo mức lãi suất tiết kiệm với kỳ hạn 1 năm là 6%. Tuy nhiên sau thời hạn một năm ông Sáu không đến nhận tiền lãi mà để thêm một năm nữa mới lãnh. Khi đó số tiền lãi có được sau năm đầu tiên sẽ được ngân hàng cộng dồn vào số tiền gửi ban đầu để thành số tiền gửi cho năm kế tiếp với mức lãi suất cũ. Sau 2 năm ông Sáu nhận được số tiền là 112.360.000 đồng (kể cả gốc lẫn lãi). Hỏi ban đầu ông Sáu đã gửi bao nhiêu tiền?

Bài 4. (1,5 điểm)

Cho phương trình: x2-2mx+m-2=0 (1) (x là ẩn số)

a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị m

b) Định m để hai nghiệm x1, x2 của phương trình (1) thỏa mãn (1+x1)(2-x2)+(1+x2)(2-x1)=x12+x22+2

Bài 5. (3,5 điểm)

Cho ∆ ABC (AB < AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại D, E. Gọi H là giao điểm của BD và CE; F là giao điểm của AH và BC.

a) Chứng minh AF BC và góc AFD = góc ACE

b) Gọi M là trung điểm của AH. Chứng minh MD OD và 5 điểm M, D, O, F, E cùng thuộc một đường tròn.

c) Gọi K là giao điểm của AH và DE. Chứng minh MD2 = MK.MF và K là trực tâm của ∆ MBC

d) Chứng minh 2FK=1FH+1FA

ĐÁP ÁN ĐỀ THI VÀO 10 MÔN TOÁN TPHCM NĂM 2016 – 2017

Bài 1.(2,0 điểm)

Giải các phương trình và hệ phương trình:

a) x2-25+5=0(x-5)2=0 x-5=0x=5

Vậy phương trình đã cho có tập nghiệm S = {5}

b) 4x2-5x2-9=0

Đặt x2 = t (t ≥ 0)

Khi đó phương trình trở thành: 4t2-5t-9=0 (*)

Ta có: a - b + c = 4 - (-5) - 9 = 0

Nên ta có phương trình (*) có 2 nghiệm phân biệt là: t = - 1 (loại) và t=94 (thỏa mãn điều kiện)

Với t=94 ta có: x2=94x=±32

Vậy phương trình đã cho có tập nghiêm là: S=-32;32

c.

2x+5y=-13x-2y=86x+12y=-36x-4y=1619y=-193x-2y=8x=2y=-1

Vậy hệ phương trình có 1 nghiệm duy nhất (x;y) = (2;-1).

d)

 x(x-3)=15-(3x-1)x2+6x-16=0'=9+16=25>0

Khi đó phương trình có 2 nghiệm phân biệt là: x = - 8; x = 2

Vậy tập nghiệm của phương trình đã cho là S = {-8;2}

Bài 2.(1,5 điểm).

a)Vẽ đồ thị hai hàm số.

Bảng giá trị

x

-2

-1

0

1

2

y=-x24

-4

-1

0

-1

-4

y=x2-2

 

 

-2

 

0

Đồ thị

b)Tìm tọa độ giao điểm của (d) và (P) bằng phép tính

Xét phương trình hoành độ giao điểm của (d) và (P)

-x24=x2-2 x2+2x-8=0'=9

Phương trình trên có hai nghiệm phân biệt: x1=2; x2=-4

Với x1=2 ta có y1=-1, A(2;-1)

Với x1=2 ta có y1=-1, A(2;-1)

Vậy (d) cắt (P) tại hai điểm phân biệt A(2 ;-1) ; B(-4 ;-4)

Bài 3 (1,5 điểm)

a.

A=2-31+4+23+2+31-4-23= 2-31+3+2.1.3+1+2+31-3-2.1.3+1=2-31+(3+1)2+2+31-(3-1)2 = 2-31+3+1+2+31-3+1= 2-32+3+2+32-3=(4-43+3)+(3+43+3)4-1=141=14

b) Gọi số tiền ông Sáu gửi ban đầu là x( đồng, x > 0).

Theo đề bài ta có:

Số tiền lãi sau 1 năm ông Sáu nhận được là: 0,06x( đồng).

Số tiền có được sau 1 năm của ông Sáu là: x + 0,06x = 1,06x( đồng).

Số tiền lãi năm thứ 2 ông Sáu nhận được là: 1,06x. 0,06 = 0,0636x( đồng).

Do vậy số tiền tổng cộng sau 2 năm ông Sáu nhận được là: 1,06x + 0,0636x = 1,1236x( đồng).

Mặt khác: 1,1236x = 112360000 nên x = 100000000( đồng) hay 100 triệu đồng.

Vậy ban đầu ông Sáu đã gửi 100 triệu đồng.

Bài 4 (1,5 điểm)

a) Ta có:

 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

 (1) luôn có 2 nghiệm với mọi m.

b)Theo định lý Viet ta có: x1+x2=2mx1x2=m-2

Ta có: 

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Và 

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Do vậy: 

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Vậy giá trị của m thỏa mãn là: m = 1; m = -12

Bài 5 (3,5 điểm)

a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn nửa đường tròn)

Suy ra BD AC và CE AB . Mà BD cắt CE tại H nên H là trực tâm ∆ ABC.

Suy ra AH BC

Vì AH BC, BD AC nên góc HFC = góc HDC = 90o

Suy ra góc HFC + góc HDC = 180o

Suy ra HFCD là tứ giác nội tiếp

góc HFD = góc HCD

b) Vì M là trung điểm cạnh huyền của tam giác vuông ADH nên MD = MA = MH

Tương tự ta có ME = MA = MH

Suy ra MD = ME

Mà OD = OE nên ∆ OEM = ∆ ODM (c.c.c) góc MOE = góc MOD = 12 góc EOD (1)

Theo quan hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = 12 góc EOD (2)

Theo ý a) ta có góc HFD = góc HCD = góc ECD (3)

Từ (1), (2), (3) góc MOD = góc HFD hay góc MOD = góc MFD

Suy ra tứ giác MFOD là tứ giác nội tiếp (4)

góc MDO = 180o – góc MFO = 90o MD DO

Chứng minh tương tự ta có MEFO là tứ giác nội tiếp (5)

Từ (4) và (5) suy ra 5 điểm M, E, F, O, D cùng thuộc 1 đường tròn.

c) Gọi I là giao điểm thứ hai của MC với đường tròn (O)

Ta có góc MDE = góc DCE (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung, cùng chắn cung DE) hay góc MDK = góc HCD

Mà góc HCD = góc HFD (cmt) góc MDK = góc HFD hay góc MDK = góc MFD

=> tam giác MDK đồng dạng với tam giác MFD(g-g)

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Ta có góc MDI = góc MCD (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung, cùng chắn cung DI)

=> tam giác MDI đồng dạng với tam giác MCD(g-g)

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Xét ∆ MKI và ∆ MCF có

KMI chung 

MIMF=MKMC

=> tam giác MKI đồng dạng với tam giác MCF(c-g-c)

góc MIK = góc MFC = 90o KI MC

Mà góc BIC = 90o (góc nội tiếp chắn nửa đường tròn) nên BI MC

Suy ra B, K, I thẳng hàng BK MC

Mà MK BC nên K là trực tâm ∆ MBC.

d) Vì MA = MH nên

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Vì MD2 = MK. MF (cmt) nên 

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

MD =MA=> FA .FH =FK .FM

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1) (đpcm)

Phòng Giáo dục và Đào tạo .....

Đề khảo sát chất lượng Toán vào 10

Năm học 2015 - 2016

Môn: Toán

Thời gian làm bài: 120 phút

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh có đáp án (Tự luận) - năm 2015

Bài 1: (2 điểm)

Giải các phương trình và hệ phương trình sau:

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Bài 2: (1,5 điểm)

a) Vẽ đồ thị (P) của hàm số y=x2 và đường thẳng (d): y=x+2 trên cùng một hệ trục toạ độ.

b) Tìm toạ độ các giao điểm của (P) và (d) ở câu trên bằng phép tính.

Bài 3: (1,5 điểm)

Thu gọn các biểu thức sau:

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Bài 4: (1,5 điểm)

Cho phương trình x2-mx+m-2=0 (1) (x là ẩn)

a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị m

b) Định m để hai nghiệm x1;x2 của (1) thỏa mãn x12-2x1-1.x22-2x2-1=4

Bài 5: (3,5 điểm)

Cho tam giác ABC (AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC.

a) Chứng minh : AD ^ BC và AH.AD=AE.AC

b) Chứng minh EFDO là tứ giác nội tiếp

c) Trên tia đối của tia DE lấy điểm L sao cho DL = DF. Tính số đo góc BLC

d) Gọi R, S lần lượt là hình chiếu của B,C lên EF. Chứng minh DE + DF = RS

ĐÁP ÁN ĐỀ THI VÀO 10 MÔN TOÁN TPHCM NĂM 2015 – 2016

Bài 1: (2 điểm)

Giải các phương trình và hệ phương trình sau:

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Đặt u = x20 pt thành :

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Bài 2:

a)    Đồ thị:

Lưu ý: (P) đi qua O(0;0), (±1;1);(±2;4)

(d) đi qua (-1;1);(2;4)

b) PT hoành độ giao điểm của (P) và (d) là

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Vậy toạ độ giao điểm của (P) và (d) là (-1;1); (2;4)

Bài 3: Thu gọn các biểu thức sau:

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Với x0;x4 ta có :

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Bài 4:

Cho phương trình x2- mx + m - 2 = 0  (1)   (x là ẩn số)

a) Chứng minh phương trình (1) luôn có 2 nghiệm phân biệt với mọi giá trị m

 Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Vậy phương trình có 2 nghiệm phân biệt với mọi m

b) Định m để hai nghiệm x1;x2 của (1) thỏa mãn x12-2x1-1.x22-2x2-1=4

Vì a+b+c = 1-m+m-2 = -1 0m nên phương trình (1) có 2 nghiệm x1;x21

Từ (1) suy ra : x2-2=mx-m

Đề thi vào 10 môn Toán Thành phố Hồ Chí Minh - có đáp án (Tự luận) (ảnh 1)

Bài 5

          

a)Do FC ^AB ,BE ^AC , H trực tâm AH^ BC

Ta có tứ giác HDCE nội tiếp

Xét 2 tam giác đồng dạng EAH và DAC (2 tam giác vuông có góc A chung)

AHAC=AEADAH.AD=AE.AC(đpcm)

b)Do AD là phân giác của FDE nên FDE= 2FBE= 2FCE= FOE

Vậy tứ giác EFDO nội tiếp (cùng chắn cung EF )

c)Vì AD là phân giác FDE Þ DB là phân giác FDL

F, L đối xứng qua BC L đường tròn tâm O

Vậy BLC là góc nội tiếp chắn nửa đường tròn tâm O = BLC 900

d) Gọi Q là giao điểm của CS với đường tròn O.

Vì 3 cung BF, BL và EQ bằng nhau (do kết quả trên)

=>Tứ giác BEQL là hình thang cân nên hai đường chéo BQ và LE bằng nhau.

Mà BQ = RS, LE = DL + DE = DF + DE suy ra điều phải chứng minh.

Để xem trọn bộ Đề thi vào 10 môn Toán có đáp án, Thầy/ cô vui lòng Tải xuống!

1 870 27/02/2024
Mua tài liệu