Trắc nghiệm Toán 10 Bài 14. Các số đặc trưng đo độ phân tán có đáp án
Trắc nghiệm Toán 10 Bài 14. Các số đặc trưng đo độ phân tán có đáp án
-
413 lượt thi
-
15 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
21/07/2024Điểm kiểm tra của 11 học sinh cho bởi bảng số liệu sau
Điểm |
7 |
7,5 |
8 |
8,5 |
9 |
9,5 |
Tần số |
1 |
2 |
3 |
2 |
2 |
1 |
Tìm phương sai của bảng số liệu
Đáp án đúng là: B
Giá trị trung bình của mẫu số liệu là \(\overline x = \frac{{1.7 + 2.7,5 + 3.8 + 2.8,5 + 2.9 + 1.9,5}}{{11}} \approx 8,23\).
Ta có bảng sau
Giá trị |
Độ lêch |
Bình phương độ lệch |
7 |
7 – 8,23 = - 1,23 |
1,5129 |
7,5 |
7,5 – 8,23 = - 0,73 |
0,5329 |
7,5 |
7,5 – 8,23 = - 0,73 |
0,5329 |
8 |
8 – 8,23 = -0,23 |
0,0529 |
8 |
8 – 8,23 = -0,23 |
0,0529 |
8 |
8 – 8,23 = -0,23 |
0,0529 |
8,5 |
8,25 – 8,23 = 0,02 |
0,0004 |
8,5 |
8,25 – 8,23 = 0,02 |
0,0004 |
9 |
9 – 8,23 = 0,77 |
0,5929 |
9 |
9 – 8,23 = 0,77 |
0,5929 |
9,5 |
9,5 – 8,23 = 1,27 |
1,6129 |
Tổng |
5,5369 |
Vì có 11 giá trị nên n = 11 do đó \({s^2} = \frac{{5,5369}}{{11}} \approx 0,5\).
Câu 2:
15/07/2024Điểm kiểm tra học kỳ của 10 học sinh được thống kê như sau: 6; 7; 7; 5; 8; 6; 9; 9; 8; 6. Khoảng biến thiên của dãy số là
Đáp án đúng là: B
Ta có giá trị lớn nhất của số liệu là 9 và giá trị nhỏ nhất của số liệu là 5.
Khoảng biến thiên là hiệu số giữa giá trị lớn nhất và giá trị nhỏ nhất trong mẫu số liệu.
Vậy R = 9 – 5 = 4.
Câu 3:
23/07/2024Điều tra chiều cao của 10 hs lớp 10A cho kết quả như sau: 154; 160; 155; 162; 165; 162; 155; 160; 165; 162 (đơn vị cm). Khoảng tứ phân vị là
Đáp án đúng là: C
Ta sắp xếp số liệu theo thứ tự không giảm như sau: 154; 155; 155; 160; 160; 162; 162; 162; 165; 165.
Vì n = 10 là số chẵn nên Q2 là trung bình cộng của hai số chính giữa
Q2 = (160 + 162) : 2 = 161
Ta tìm Q1 là trung vị nửa số liệu bên trái Q2 là 154; 155; 155; 160; 160 gồm 5 giá trị và tìm được Q1 = 155
Ta tìm Q3 là trung vị nửa số liệu bên phải Q2 là 162; 162; 162; 165; 165 gồm 5 giá trị và tìm được Q3 = 162
Vậy khoảng tứ phân vị ∆Q = Q3 – Q1 = 162 – 155 = 7.
Câu 4:
14/07/2024Cho dãy số liệu thống kê 10; 8; 6; 8; 9; 8; 7; 6; 9; 9; 7. Khoảng tứ phân vị là
Đáp án đúng là: D
Ta sắp xếp số liệu theo thứ tự không giảm như sau: 6; 6; 7; 7; 8; 8; 8; 9; 9; 9; 10.
Vì n = 11 là số lẻ nên Q2 là giá trị chính giữa của mẫu số liệu Q2 = 8
Ta tìm Q1 là nửa số liệu bên trái Q2 là 6; 6; 7; 7; 8 gồm 5 giá trị và tìm được Q1 = 7
Ta tìm Q3 là nửa số liệu bên phải Q2 là 8; 9; 9; 9; 10 gồm 5 giá trị và tìm được Q3 = 9
Vậy khoảng tứ phân vị ∆Q = Q3 – Q1 = 9 – 7 = 2
Câu 5:
13/07/2024Cho dãy số liệu thống kê 4; 5; 4; 3; 7; 6; 9; 6; 7; 8; 9. Khoảng biến thiên của dãy số liệu là
Đáp án đúng là: D
Khoảng biến thiên là hiệu số giữa giá trị lớn nhất bằng 9 và giá trị nhỏ nhất bằng 3 trong mẫu số liệu. Vậy R = 9 – 3 = 6.
Câu 6:
23/07/2024Mẫu số liệu cho biết số ghế trống của một xe khách trong 5 ngày: 7; 6; 6; 5; 9. Tìm phương sai của mẫu số liệu trên
Đáp án đúng là: A
Giá trị trung bình của mẫu số liệu: \(\overline x = \frac{{7 + 6 + 6 + 5 + 9}}{5} = 6,6\)
Ta có bảng sau
Giá trị |
Độ lệch |
Bình phương độ lệch |
7 |
7 – 6,6 = 0,4 |
0,16 |
6 |
6 – 6,6 = - 0,6 |
0,36 |
6 |
6 – 6,6 = - 0,6 |
0,36 |
5 |
5 – 6,6 = - 1,6 |
2,56 |
9 |
9 – 6,6 = - 2,4 |
5,76 |
Tổng |
9,2 |
Vì có 5 giá trị nên n = 5. Do đó \({s^2} = \frac{{9,2}}{5} = 1,84\).
Câu 7:
22/07/2024Mẫu số liệu cho biết sĩ số của 4 lớp 10 tại một trường Trung học: 45; 43; 50; 46. Tìm độ lệch chuẩn của mẫu số liệu này
Đáp án đúng là: B
Ta có \(\overline x = \frac{{45 + 43 + 50 + 46}}{4} = 46\)
Ta có bảng sau
Giá trị |
Độ lệch |
Bình phương độ lệch |
45 |
45 – 46 = 1 |
1 |
43 |
43 – 46 = - 3 |
9 |
50 |
50 – 46 = 4 |
16 |
46 |
46 – 46 = 0 |
0 |
Tổng |
26 |
Vì có 4 giá trị nên n = 4 Do đó \({s^2} = \frac{{26}}{4} = 6,5\)
Độ lệch chuẩn \(s = \sqrt {6,5} \approx 2,55\).
Câu 8:
21/07/2024Số học sinh giỏi của 12 lớp trong một trường phổ thông được ghi lại như sau: 0; 2; 5; 3; 4; 5; 4; 6; 1; 2; 5; 4. Tìm độ lệch chuẩn của mẫu số liệu trên
Đáp án đúng là: C
Ta có \(\overline x = \frac{{0 + 2 + 5 + 3 + 4 + 5 + 4 + 6 + 1 + 2 + 5 + 4}}{{12}} \approx 3,42\).
Ta có bảng sau
Giá trị |
Độ lệch |
Bình phương độ lệch |
0 |
0 – 3,42 = - 3,42 |
11,6964 |
2 |
2 – 3,42 = - 1,42 |
2,0164 |
5 |
5 – 3,42 = 1,58 |
2,4964 |
3 |
3 – 3,42 = - 0, 42 |
0,1764 |
4 |
4 – 3,42 = 0,58 |
0,3364 |
5 |
5 – 3,42 = 1,58 |
2,4964 |
4 |
4 – 3,42 = 0,58 |
0,3364 |
6 |
6 – 3,42 = 2,58 |
6,6564 |
1 |
1 – 3,42 = - 2,42 |
5,8564 |
2 |
2 – 3,42 = - 1,42 |
2,0164 |
5 |
5 – 3,42 = 1,58 |
2,4964 |
4 |
4 – 3,42 = 0,58 |
0,3364 |
Tổng |
36,9168 |
Vì có 12 giá trị nên n = 12. Do đó \({s^2} = \frac{{36,9168}}{{12}} = 3,0764\)
Độ lệch chuẩn s = \(\sqrt {3,0764} \) ≈ 1,75.
Câu 9:
20/07/2024Sản lượng lúa (tạ/ha) của 10 tỉnh cho bởi số liệu: 30; 30; 10; 25; 35; 45; 40; 40; 35; 45. Tìm giá trị bất thường của mẫu số liệu.
Đáp án A
Ta sắp xếp mẫu số liệu theo thứ tự không giảm như sau: 10; 25; 30; 30; 35; 35; 40; 40; 45; 45.
Vì n = 10 là số chẵn nên Q2 là trung bình cộng của hai giá trị chính giữa
Q2 = (35 + 35) : 2 = 35.
Ta tìm Q1 là trung vị nửa bên trái Q2 là 10; 25; 30; 30; 35 gồm 5 giá trị và ta tìm được Q1 = 30.
Ta tìm Q3 là trung vị nửa bên phải Q2 là 35; 40; 40; 45; 45 gồm 5 giá trị và ta tìm được Q3 = 40.
Vậy ∆Q = 40 – 30 = 10
Ta có Q1 – 1,5. ∆Q = 15; Q3 + 1,5. ∆Q = 55 nên mẫu số liệu trên có một giá trị bất thường là 10 (bé hơn 15).
Câu 10:
23/07/2024Đáp án C
Ta sắp xếp mẫu số liệu theo thứ tự không giảm như sau: 5; 6,6; 6,8; 7,2; 7,2; 7,6; 8,0; 8,2; 8,2; 8,2; 8,4; 9,0; 10,5.
Vì n = 13 là số lẻ nên Q2 là số chính giữa của mẫu số liệu Q2 = 8,0
Ta tìm Q1 là trung vị nửa bên trái Q2 là 5; 6,6; 6,8; 7,2; 7,2; 7,6 gồm 6 giá trị, hai số chính giữa là 6,8 và 7, 2. Do đó Q1 = (6,8 + 7,2) : 2 = 7,0.
Ta tìm Q3 là trung vị nửa bên phải Q2 là 8,2; 8,2; 8,2; 8,4; 9,0; 10,5 gồm 6 giá trị, hai số chính giữa là 8,2 và 8,4. Do đó Q3 = (8,2 + 8,4) : 2 = 8,3.
Vậy ∆Q = 8,3 – 7,0 = 1,3
Ta có Q1 – 1,5. ∆Q = 5,05; Q3 + 1,5. ∆Q = 10,25 nên mẫu số liệu trên có hai giá trị bất thường là 5 (bé hơn 5,05) và 10,5 (lớn hơn 10,25).
Câu 11:
23/07/2024Đáp án đúng là C
Khoảng biến thiên là hiệu số của giá trị lớn nhất và giá trị nhỏ nhất trong mẫu số liệu. Vậy khoảng biến thiên R = 165 – 154 = 11.
Câu 12:
21/07/2024Đáp án đúng là A
Ta sắp xếp mẫu số liệu theo thứ tự không giảm như sau: 40; 42; 42; 43; 43; 45; 45; 45; 50; 50.
Vì n = 10 là số chẵn nên Q2 là trung bình cộng của hai số chính giữa
Q2 = (43 + 45) : 2 = 44.
Ta tìm Q1 là trung vị nửa bên trái Q2 là 40; 42; 42; 43; 43 gồm 5 giá trị và ta tìm được Q1 = 42.
Ta tìm Q3 là trung vị nửa bên phải Q2 là 45; 45; 45; 50; 50 gồm 5 giá trị và ta tìm được Q3 = 45.
Vậy ∆Q = 45 – 42 = 3.
Câu 13:
12/07/2024Đáp án đúng là D
Giá trị trung bình của mẫu số liệu là \(\overline x = \frac{{36 + 38 + 40 + 34}}{4} = 37\)
Ta có bảng sau
Giá trị |
Độ lệch |
Bình phương độ lệch |
36 |
36 – 37 = - 1 |
1 |
38 |
38 – 37 = 1 |
1 |
34 |
34 – 37 = - 3 |
9 |
40 |
40 – 37 = 3 |
9 |
Tổng |
20 |
Vì có 4 giá trị nên n = 4. Do đó \({s^2} = \frac{{20}}{4} = 5\)
Do đó \(s = \sqrt 5 = 2,24\).
Câu 14:
20/07/2024Đáp án đúng là C
Giá trị trung bình của mẫu số liệu là \(\overline x = \frac{{3 + 3 + 5 + 5 + 4}}{5} = 4\)
Ta có bảng sau
Giá trị |
Độ lệch |
Bình phương độ lệch |
3 |
3 – 4 = - 1 |
1 |
3 |
3 – 4 = - 1 |
1 |
5 |
5 – 4 = 1 |
1 |
5 |
5 – 4 = 1 |
1 |
4 |
4 – 4 = 0 |
0 |
Tổng |
4 |
Vì có 5 giá trị nên n = 5. Do đó \({s^2} = \frac{4}{5} = 0,8\).
Câu 15:
20/07/2024Đáp án đúng là A
Ta sắp xếp mẫu số liệu theo thứ tự không giảm như sau: 155; 159; 160; 162; 162; 165 Vì n = 6 là số chẵn nên Q2 là trung bình cộng của hai số chính giữa
Q2 = (160 + 162) : 2 = 161.
Ta tìm Q1 là trung vị nửa bên trái Q2 là 155; 159; 160 gồm 3 giá trị và ta tìm được Q1 = 159.
Ta tìm Q3 là trung vị nửa bên phải Q2 là 162; 162; 165 gồm 3 giá trị và ta tìm được Q3 = 162.
Vậy ∆Q = Q3 – Q1 = 162 – 159 = 3.
Có thể bạn quan tâm
- Trắc nghiệm Toán 10 Bài 14. Các số đặc trưng đo độ phân tán có đáp án (412 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 14. Các số đặc trưng đo độ phân tán có đáp án (306 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Toán 10 Bài 13. Các số đặc trưng đo xu thế trung tâm có đáp án (408 lượt thi)
- Trắc nghiệm Toán 10 Bài 12. Số gần đúng và sai số có đáp án (399 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài ôn tập cuối chương 5 có đáp án (388 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 13. Các số đặc trưng đo xu thế trung tâm có đáp án (237 lượt thi)
- Trắc nghiệm Toán 10 Bài ôn tập cuối chương 5 có đáp án (225 lượt thi)
- Thi Online Trắc nghiệm Toán 10 Bài 12. Số gần đúng và sai số có đáp án (197 lượt thi)