Giải SGK Toán 11 CTST Bài 1. Điểm, đường thẳng và mặt phẳng trong không gian
Giải SGK Toán 11 CTST Bài 1. Điểm, đường thẳng và mặt phẳng trong không gian
-
101 lượt thi
-
41 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
22/07/2024Môn học Hình học phẳng tìm hiểu tính chất của các hình cùng thuộc một mặt phẳng. Môn học Hình học không gian tìm hiểu tính chất của các hình trong không gian, những hình này có thể chứa những điểm không cùng thuộc một mặt phẳng. Hãy phân loại các hình sau thành hai nhóm hình khác nhau.
Đặt tên các hình như sau:
Các hình trên được phân thành hai nhóm sau:
- Nhóm Hình học phẳng gồm: Hình 1, Hình 3, Hình 6, Hình 8.
- Nhóm Hình học không gian gồm: Hình 2, Hình 4, Hình 5, Hình 7.
Câu 2:
07/07/2024Mặt bàn, mặt bảng cho ta hình ảnh của mặt phẳng. Hãy chỉ thêm các ví dụ khác về hình ảnh một phần của mặt phẳng.
Các ví dụ khác về mặt phẳng: Mặt tường, mặt nền nhà, mặt ghế, ...
Câu 3:
14/07/2024a) Vẽ hình biểu diễn của một hình hộp chữ nhật.
a) Hình biểu diễn của hình hộp chữ nhật ABCD.A’B’C’D’ là:
Câu 4:
06/07/2024b) Quan sát Hình 4a và cho biết điểm nào thuộc, điểm nào không thuộc mặt phẳng (P).
Dựa vào hình vẽ, ta có:
Các điểm A’, B’, C’, D’ thuộc mặt phẳng (P).
Các điểm A, B, C, D không nằm trên mặt phẳng (P).
Câu 5:
15/07/2024c) Quan sát Hình 4b và cho biết điểm nào thuộc, điểm nào không thuộc mặt phẳng (Q).
Dựa vào hình vẽ, ta có:
Các điểm A, D, C thuộc mặt phẳng (Q).
Điểm B không thuộc mặt phẳng (Q).
Câu 6:
20/07/2024Quan sát Hình 5 và cho biết muốn gác một cây sào tập nhảy cao, người ta cần dựa nó vào mấy điểm trên hai cọc đỡ.
Để gác một cây sào tập nhảy cao người ta cần dựa nó vào hai điểm trên cọc đỡ.
Câu 7:
20/07/2024Cho bốn điểm A, B, C, D phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu đường thẳng đi qua hai trong bốn điểm đã cho.
Có tất cả 6 đường thẳng đi qua 2 trong 4 điểm đã cho: AB, AC, AD, BD, BC, CD.
Câu 8:
19/07/2024Quan sát Hình 7 và cho biết giá đỡ của máy ảnh tiếp đất tại mấy điểm. Tại sao giá đỡ máy ảnh thường có ba chân?
Giá đỡ của máy ảnh tiếp đất tại 3 điểm.
Qua ba điểm này ta xác định được duy nhất một mặt phẳng nên việc giá đỡ máy ảnh thường có ba chân để có điểm tựa là một mặt phẳng giữ cố định máy ảnh.
Câu 9:
20/07/2024Có bao nhiêu mặt phẳng đi qua ba đỉnh của tam giác MNP?
Có duy nhất một mặt phẳng đi qua ba đỉnh của tam giác MNP.
Câu 10:
10/07/2024Quan sát Hình 10 và cho biết thợ mộc kiểm tra mặt bàn có phẳng hay không bằng một cây thước thẳng như thế nào?
Người thợ mộc kiểm tra mặt bàn phẳng bằng cách sau:
- Đặt thước vào mặt bàn và đẩy di động;
- Kiểm tra xem thước có khít với mặt bàn không, nếu thước khít với mặt bàn thì mặt bàn phẳng, còn thước bị chênh so với mặt bàn thì mặt bàn không phẳng.
Câu 11:
20/07/2024Cho mặt phẳng (Q) đi qua bốn đỉnh của tứ giác ABCD. Các điểm nằm trên đường chéo của tứ giác ABCD có thuộc mặt phẳng (Q) không? Giải thích.
Gọi H là một điểm bất kì nằm trên đường chéo AC của tứ giác ABCD.
Áp dụng tính chất 2, ta có (Q) là mặt phẳng duy nhất đi qua bốn điểm A, B, C, D.
Áp dụng tính chất 3, ta có mọi điểm thuộc đường thẳng AC đều thuộc mặt phẳng (Q). Mà H thuộc AC nên H thuộc (Q).
Chứng minh tương tự với mọi điểm bất kì thuộc đường chéo BD.
Vật các điểm nằm trên đường chéo của tứ giác ABCD đều thuộc mặt phẳng (Q).
Câu 12:
15/07/2024Quan sát Hình 13 và cho biết bốn đỉnh A, B, C, D của cái bánh giò có cùng nằm trên một mặt phẳng hay không?
Bốn đỉnh A, B, C, D của cái bánh giò không cùng nằm trên một mặt phẳng.
Câu 13:
15/07/2024Cho tam giác MNP và cho điểm O không thuộc mặt phẳng chứa ba điểm M, N, P. Tìm các mặt phẳng phân biệt được xác định từ bốn điểm M, N, P, O.
Các mặt phẳng phân biệt được xác định từ bốn điểm M, N, P, O là: (OMN), (ONP), (OMP), (MNP).
Câu 14:
06/07/2024Quan sát Hình 14 và mô tả phần giao nhau của hai bức tường.
Phần giao nhau của hai bức tường là một đường thẳng.
Câu 15:
17/07/2024Cho A, B, C là ba điểm chung của hai mặt phẳng phân biệt (α) và (β) (Hình 16). Chứng mình A, B, C thẳng hàng.
Gọi giao điểm của mặt phẳng (α) và (β) là đường thẳng d.
Ta có A, B, C là ba điểm chung của hai mặt phẳng phân biệt (α) và (β) nên A, B, C ∈ d do đó A, B, C thẳng hàng.
Câu 16:
23/07/2024Trong mặt phẳng (P), cho tam giác ABC có M, N lần lượt là trung điểm của các đoạn thẳng AB, AC (Hình 17). Tính tỉ số .
Xét tam giác ABC, có:
M là trung điểm của AB;
N là trung điểm của AC
Do đó MN là đường trung bình của tam giác ABC
.
Câu 17:
08/07/2024Tại sao muốn cánh cửa đóng mở được êm thì các điểm gắn bản lề A, B, C của cánh cửa và mặt tường (Hình 19) phải cùng nằm trên một đường thẳng?
Để cánh cửa đóng mở được êm thì các điểm bản lề A, B, C của mặt phẳng cánh cửa và mặt tưởng phải nằm trên một trục quay và trục quay này là giao điểm của mặt phẳng cánh cửa và mặt tường.
Câu 18:
06/07/2024Cho đường thẳng a và điểm A không nằm trên a. Trên a lấy hai điểm B, C. Đường thẳng a có nằm trong mặt phẳng (ABC) không? Giải thích.
Qua ba điểm A, B, C không thẳng hàng ta có một mặt phẳng duy nhất đi qua 3 điểm này là (ABC).
Qua hai điểm B và C ta vẽ được duy nhất một đường thẳng a đi qua hai điểm này .
Vì B và C thuộc (ABC) nên đường thẳng thẳng a cũng thuộc (ABC).
Câu 19:
17/07/2024Hai đường thẳng phân biệt a và b cắt nhau tại điểm O. Trên a, b lấy lần lượt hai điểm M, N khác O. Gọi (P) là mặt phẳng đi qua ba điểm M, N, O (Hình 25). Mặt phẳng (P) có chứa cả hai đường thẳng a và b không? Giải thích.
Ta có:
Hai điểm O và M thuộc mặt phẳng (P) nên đường thẳng a thuộc (P).
Hai điểm O và N thuộc mặt phẳng (P) nên đường thẳng b thuộc (P).
Vậy mặt phẳng (P) chứa cả hai đường thẳng a và b.
Câu 20:
21/07/2024Cho hai đường thẳng a và b cắt nhau tại O và điểm M không thuộc mặt phẳng (a, b).
a) Tìm giao tuyến của hai mặt phẳng (M, a) và (M, b).
a) Ta có hình vẽ sau:
Ta có:
M ∈ mp(M, a) và M ∈ mp(M, b) nên M ∈ (M, a) ∩ (M, b).
O là giao điểm của hai đường thẳng a và b, mà a ⊂ mp(M, a) và b ⊂ mp(M, b) nên O ∈ (M, a) ∩ (M, b).
Vậy giao tuyến của hai mặt phẳng (M, a) và (M, b) là đường thẳng qua hai điểm M và O.
Câu 21:
17/07/2024b) Lấy A, B lần lượt là hai điểm trên a, b và khác với điểm O. Tìm giao tuyến của (MAB) và mp(a, b).
b)
Ta có: A ∈ (MAB) và A ∈ a ⊂ mp(a, b) nên A ∈ (MAB) ∩ mp(a, b).
Ta lại có: B ∈ (MAB) và B ∈ b ⊂ mp(a, b) nên B ∈ (MAB) ∩ mp(a, b).
Vậy giao tuyến của (MAB) và mp(a, b) là đường thẳng ABCâu 22:
19/07/2024c) Lấy điểm A’ trên đoạn MA và điểm B’ trên đoạn MB sao cho đường thẳng A’B’ cắt mp(a, b) tại C. Chứng minh ba điểm A, B, C thẳng hàng.
c)
Ta có (MA’B’) cũng là mặt phẳng (MAB)
Mà (MAB) giao mp(a, b) là đường thẳng AB nên điểm C cũng thuộc đường thẳng này do đó ba điểm A, B, C thẳng hàng.
Câu 23:
21/07/2024Giải thích tại sao ghế bốn chân có thể bị khập khiễng còn ghế ba chân thì không.
Qua bốn điểm không thẳng hàng ta có thể có được nhiều mặt phẳng đi qua bốn điểm này. Do đó chân ghế bốn chân hay bị khập khiễng.
Còn ghế ba chân có ba điểm tựa và qua ba điểm tựa này chỉ có thể có một mặt phẳng nên ghế ba chân không bị khập khiễng.
Câu 24:
21/07/2024Trong xây dựng, người ta thường dùng máy quét tia laser để kẻ các đường thẳng trên tường hoặc sàn nhà. Tìm giao tuyến của mặt phẳng tạo bởi các tia laser OA và OB của các mặt tường trong Hình 29.
Giao tuyến của mặt phẳng tạo bởi tia laser OA và OB với hai mặt tường lần lượt là AC và BC.
Câu 25:
21/07/2024a) Các công trình kiến trúc, đồ vật trong Hình 30 có mặt bên là hình gì?
b) Tìm diểm giống nhau của các hình trong Hình 31.
a) Các công trình kiến trúc và các đồ vật trong Hình 30 có mặt bên là hình tam giác.
b) Điểm giống nhau là các hinh này đều có mặt bên là các hình tam giác, mặt đáy là các đa giác.
Câu 26:
23/07/2024Trong Hình 34, hình chóp nào có số mặt ít nhất?
Hình chóp có số mặt ít nhất là Hình 34a).
Câu 27:
19/07/2024Cho tứ diện SABC. Gọi H, K lần lượt là hai điểm trên hai cạnh SA và SC (H ≠ S, A; K ≠ S, C) sao cho HK không song song với AC. Gọi I là trung điểm của BC (Hình 38).
a) Tìm giao điểm của đường thẳng HK và mặt phẳng (ABC).
a)
Xét mặt phẳng (SAC), có:
HK ∩ AC = {J}
Mà AC ⊂ (ABC)
Suy ra HK ∩ (ABC) = {J}.
Câu 28:
06/07/2024b) Tìm giao tuyến của các mặt phẳng (SAI) và (ABK); (SAI) và (BCH).
+) Ta có:
Gọi D là giao điểm của SI và BK
Ta có:
Do đó .
+) Ta có:
Ta lại có:
Do đó .
Câu 29:
23/07/2024Cho hình chóp S.ABCD. Trên các cạnh bên của hình chóp lấy lần lượt các điểm A’, B’, C’, D’. Cho biết AC cắt BD tại O, A’C’ cắt B’D’ tại O’, AB cắt CD tại E và A’B’ cắt D’C’ tại E’ (Hình 39). Chứng minh rằng:
a) S, O’, O thẳng hàng;
a) +) Ta có
Ta lại có: O là giao điểm của AC và BD nên
Suy ra .
+) Ta có
Ta lại có: O’ là giao điểm của A’C’ và B’D’ nên
Suy ra .
+) Mặt khác mặt phẳng (SA’C’) cũng chính là mặt phẳng (SAC), mặt phẳng (SB’D’) cũng chính là mặt phẳng (SBD) do đó SO’ trùng SO. Vì vậy S, O’, O thẳng hàng.
Câu 30:
17/07/2024Chứng minh rằng:
b) S, E’, E thẳng hàng.
b) +) Ta có
Ta lại có: E là giao điểm của AB và DC nên
Suy ra .
+) Ta có
Ta lại có: E’ là giao điểm của D’C’ và A’B’ nên
Suy ra .
+) Mặt khác mặt phẳng (SB’C’) cũng chính là mặt phẳng (SBC), mặt phẳng (SD’C’) cũng chính là mặt phẳng (SDC) do đó SE’ trùng SE. Vì vậy S, E’, E thẳng hàng.
Câu 31:
22/07/2024Nêu cách tạo lập tứ diện đều SABC từ tam giác đều SS’S’’ theo gợi ý ở Hình 40.
+) Chia tam giác SS’S” thành 4 tam giác bằng nhau như hình vẽ:
- Lấy A, C, B lần lượt là trung điểm của SS’, SS”, S’S”.
- Nối các đoạn thẳng AB, BC, AC ta được bốn tam giác đều bằng nhau ∆SAC, ∆S’AB, ∆ABC, ∆S”BC.
+) Gập các nếp gấp AC, BC, AB, rồi chụm các đỉnh S, S’, S” làm một ta được hình chóp SABC.
Câu 32:
21/07/2024Cho hình chóp S.ABCD, gọi O là giao điểm của AC và BD. Lấy M, N lần lượt thuộc các cạnh SA, SC.
a) Chứng minh đường thẳng MN nằm trong mặt phẳng (SAC).
a) Ta có: M ∈ SA ⊂ (SAC);
N ∈ SC ⊂ (SAC);
⇒ MN ⊂ (SAC).
Câu 33:
06/07/2024b) Ta có O là giao điểm của AC và BD
O ∈ AC ⊂ (SAC)
O ∈ BD ⊂ (SBD).
⇒ O ∈ (SAC) ∩ (SBD).
Câu 34:
06/07/2024Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M là trung điểm của SC.
a) Tìm giao điểm I của đường thẳng AM và mặt phẳng (SBD). Chứng minh IA = 2IM.
Gọi I là giao điểm của AM và SO.
Mà SO ⊂ (SBD)
Suy ra I ∈ (SBD).
Xét tam giác SAC, có:
AM, SO là các đường trung tuyến của tam giác
Mà I là giao điểm của AM và SO nên I là trọng tâm tam giác SAC
Suy ra hay AI = 2 IM.
Câu 35:
06/07/2024b) Tìm giao điểm E của đường thẳng SD và mặt phẳng (ABM).
Từ M kẻ đường thẳng song song với AB cắt SD tại E.
Ta có ME ⊂ (ABM).
Do đó SD ∩ (ABM) = {E}.
Câu 36:
23/07/2024c) Gọi N là một điểm tùy ý trên cạnh AB. Tìm giao điểm của đường thẳng MN và mặt phẳng (SBD).
c)
Gọi MN giao với BE tại J
Mà BE ⊂ (SBD)
Suy ra I là giao điểm của MN và (SBD).
Câu 37:
22/07/2024Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi O là giao điểm của AC và BD; M và N lần lượt là trung điểm của SB và SD; P thuộc đoạn SC và không là trung điểm của SC.
a) Tìm giao điểm E của đường thẳng SO và mặt phẳng (MNP).
a) Gọi E là giao điểm của SO và MN
Mà MN ⊂ (MNP)
Suy ra SO ∩ (MNP) = {E}.
Câu 38:
22/07/2024b) Tìm giao điểm Q của đường thẳng SA và mặt phẳng (MNP).
b)
Gọi Q là giao điểm của PE và SA
Mà PE ⊂ (MNP)
Suy ra SA ∩ (MNP) = {Q}.
Câu 39:
19/07/2024c) Gọi I, J, K lần lượt là giao điểm của QM và AB, QP và AC, QN và AD. Chứng minh I, J, K thẳng hàng.
c)
Ta có: QM ∩ AB = {I};
Mà QM ⊂ (QMN), AB ⊂ (ABCD)
Suy ra I ∈ (QMN) ∩ (ABC) (1)
Ta lại có: QN ∩ AD = {K}
Mà QN ⊂ (QMN), AD ⊂ (ABCD)
Suy ra K ∈ (QMN) ∩ (ABCD ) (2)
Từ (1) và (2) suy ra (QMN) ∩ (ABCD ) = {IM}.
Mặt khác, ta có: QE ∩ AC = {J}
Mà QE ⊂ (QMN), AC ⊂ (ABCD)
Suy ra J ∈ (QMN) ∩ (ABCD )
Do đó J thuộc đường thẳng IM.
Câu 40:
21/07/2024Cho tứ diện ABCD. Gọi E, F, G lần lượt là ba điểm trên ba cạnh AB, AC, BD sao cho EF cắt BC tại I (I ≠ C), EG cắt AD tại H (H ≠ D).
a) Tìm giao tuyến của các mặt phẳng (EFG) và (BCD), (EFG) và (ACD).
a) +) Ta có: EF ∩ BC = {I}, EG ∩ BD = {G}
Mà EF, EG ⊂ (EGF) và BC, BD ⊂ (BCD)
Suy ra (EFG) ∩ (BCD) = {IG}.
+) Ta có: EF ∩ AC = {F}, EG ∩ AD = {H}
Mà EF, EG ⊂ (EGF) và AC, AD ⊂ (ACD)
Suy ra (EFG) ∩ (ACD) = {FH}.
Câu 41:
18/07/2024Thước laser phát tia laser, khi tia này quay sẽ tạo ra mặt phẳng ánh sáng (Hình 41). Giải thích tại sao các thước kẻ laser lại giúp người thợ xây dựng được đường thẳng trên tường hoặc sàn nhà.
Thước laser phát tia laser, khi tia này quay sẽ tạo ra mặt phẳng ánh sáng, mặt phẳng ánh sáng này giao với mặt tường sẽ tạo ra một vệt là đường thẳng trên tường hoặc sàn nhà.