Câu hỏi:

23/07/2024 1,272

 Xét hai mệnh đề:

(I) f(x) có đạo hàm tại x0 thì f(x) liên tục tại x0

(II) f(x) liên tục tại x0 thì f(x) có đạo hàm tại x0

Mệnh đề nào đúng?

A. Chỉ (I) 

Đáp án chính xác

B. Chỉ (II)

C. Cả hai đều sai

D. Cả 2 đều đúng.

Trả lời:

verified Giải bởi Vietjack

Đáp án: A

Giải thích:

Đáp án:

(I) hiển nhiên đúng.

(II) sai.

Ví dụ: Xét hàm số fx=x ta có

limxx0=|x0|=f(x0)Hàm số liên tục tại trên nên cũng liên tục tại điểm x = 0

Tuy nhiên hàm số không có đạo hàm tại x=0

f'(0)=limx0|x|0x0=limx0|x|x

limx0+|x|x=limx0+xx=1limx0|x|x=limx0xx=1limx0+|x|xlimx0|x|x

Không tồn tại đạo hàm của hàm số tại x=0.  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số fx=x21khix0x2khix<0. Khẳng định nào sau đây sai?

Xem đáp án » 23/07/2024 15,386

Câu 2:

Cho hàm số fx=xx1x2...x1000. Tính f'(0)?

Xem đáp án » 23/07/2024 9,765

Câu 3:

Cho hàm số fx=xxkhix00khix=0 . Xét hai mệnh đề sau:

(I) Hàm số có đạo hàm tại x0=0 và f'0 = 1

(II) Hàm số không có đạo hàm tại x0=0.

Mệnh đề nào đúng?

Xem đáp án » 23/07/2024 5,160

Câu 4:

Cho hàm số fx xác định trên 0;+ bởi f(x)=1x. Đạo hàm của f(x) tại x0=2 

Xem đáp án » 22/07/2024 3,669

Câu 5:

Tính đạo hàm của hàm số y=x3+x tại x = 1

Xem đáp án » 22/07/2024 3,574

Câu 6:

Tìm a để hàm số f(x)=x21x1khix1akhix=1có đạo hàm tại x=1.

Xem đáp án » 22/07/2024 3,012

Câu 7:

Cho hàm số f(x) là hàm số trên R định bởi f(x)=x2 và x0R. Chọn câu đúng

Xem đáp án » 23/07/2024 2,349

Câu 8:

Trong các phát biểu sau, phát biểu nào sau đây là đúng?

Xem đáp án » 23/07/2024 2,126

Câu 9:

Cho hàm số fx=x2+x. Xét hai câu sau:

(1). Hàm số trên có đạo hàm tại x = 1

(2). Hàm số trên liên tục tại x=0.

Trong hai câu trên:

Xem đáp án » 21/07/2024 1,601

Câu 10:

Tìm a,b để hàm fx=ax2+bx+1  khi   x0asinx+bcosx   khi  x<0 có đạo hàm tại điểm x0=0.

Xem đáp án » 20/07/2024 1,046

Câu 11:

Cho hàm số fx=x34x2+3xx23x+2 khi x10 khi x=1 . Giá trị của f'1  bằng:

Xem đáp án » 21/07/2024 988

Câu 12:

Cho hàm số f(x)=34x4khix014khix=0.Tính f' 0 .

Xem đáp án » 19/07/2024 593

Câu 13:

Cho hàm số fx=x2x, đạo hàm của hàm số ứng với số gia Δxcủa đối số x tại x0 

Xem đáp án » 23/07/2024 515

Câu 14:

Khi tính đạo hàm của hàm số fx=x2+5x3 tại điểm x0 = 2, một học sinh đã tính theo các bước sau:

Bước 1: fx  f2 = fx  11

Bước 2: fx  f2x2=x2+5x311x2=(x2)(x+7)x2=x+7

Bước 3: limx2 fx  f2x2= limx2(x+7)=9  f'2=9

Tính toán trên nếu sai thì sai ở bước nào?

Xem đáp án » 20/07/2024 460

Câu 15:

Cho hàm số fx=x2+x+1x . Tính đạo hàm của hàm số tại x0=1.

Xem đáp án » 20/07/2024 450

Câu hỏi mới nhất

Xem thêm »
Xem thêm »