Câu hỏi:

16/07/2024 325

Với nN*, hãy rút gọn biểu thức S=1.4+2.7+3.10+...+n(3n+1)

A. S=n(n+1)2

Đáp án chính xác

B. S=n(n+2)2

C. S=n(n+1)

D. S=2n(n+1)

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Để chọn được S đúng, chúng ta có thể dựa vào một trong ba cách sau đây:

Cách 1: Kiểm tra tính đúng –sai của từng phương án với những giá trị của n.

Với n = 1 thì S = 1.4 = 4 (loại ngay được phương án B và C).

Với n = 2 thì 

S = 1.4 + 2.7 = 18 (loại được phương án D).

Cách 2: Bằng cách tính S trong các trường hợp n = 1, S = 4; n = 2, S = 18; n = 3, S = 48 ta dự đoán được công thức S=n(n+1)2

Cách 3: Ta tính S dựa vào các tổng đã biết kết quả như

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Dùng quy nạp chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên np (p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề P(n) đúng với n = k. Khẳng định nào sau đây là đúng?

Xem đáp án » 19/07/2024 279

Câu 2:

Với mỗi số nguyên dương n, đặt S=12+22+...+n2. Mệnh đề nào dưới đây là đúng

Xem đáp án » 23/07/2024 236

Câu 3:

Một học sinh chứng minh mệnh đề ''8n+1 chia hết cho 7, nN*''(*) như sau:

Giả sử (*) đúng với n = k tức là 8k + 1 chia hết cho 7

Ta có: 8k+1 + 1 = 8(8k+1) - 7, kết hợp với giả thiết 8k + 1 chia hết cho 7 nên suy ra được 8k+1 + 1 chia hết cho 7.

Vậy đẳng thức (*) đúng với mọi nN*

Khẳng định nào sau đây là đúng?

Xem đáp án » 23/07/2024 222

Câu 4:

Tính tổng: 1.4 + 2.7 + … +n.(3n +1)

Xem đáp án » 23/07/2024 215

Câu 5:

Trong phương pháp quy nạp toán học, nếu ta giả sử mệnh đề đúng với n = k thì ta cần chứng minh mệnh đề đúng đến:

Xem đáp án » 23/07/2024 213

Câu 6:

Chứng minh n3+3n2+5n chia hết cho 3

Xem đáp án » 20/07/2024 197

Câu 7:

Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến P(n) đúng với mọi số tự nhiên np (p là một số tự nhiên), ta tiến hành hai bước:

Bước 1, kiểm tra mệnh đề P(n) đúng với n = p

Bước 2, giả thiết mệnh đề P(n) đúng với số tự nhiên bất kỳ n=kp và phải chứng minh rằng nó cũng đúng với n = k + 1

Trong hai bước trên:

Xem đáp án » 19/07/2024 196

Câu 8:

Giả sử Q là tập con thật sự của tập hợp các số nguyên dương sao cho

a) kQ

b) nQn+1Qnk

Chọn mệnh đề đúng trong các mệnh đề sau.

Xem đáp án » 21/07/2024 194

Câu 9:

Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k+1 thì ta cần chứng minh mệnh đề đúng với:

Xem đáp án » 23/07/2024 190

Câu 10:

Tìm số nguyên dương p nhỏ nhất để 2n>2n+1 với mọi số nguyên np

Xem đáp án » 23/07/2024 184

Câu 11:

Đối với bài toán chứng minh P(n) đúng với mọi np với p là số tự nhiên cho trước thì ở bước 1 ta cần chứng minh mệnh đề đúng với:

Xem đáp án » 21/07/2024 183

Câu 12:

Với nN*, ta xét các mệnh đề:

P: “7n + 5 chia hết cho 2”;

Q: “7n + 5 chia hết cho 3” và

R: “7n + 5 chia hết cho 6”.

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 16/07/2024 180

Câu 13:

Với mọi số tự nhiên n2 bất đẳng thức nào sau đây đúng?

Xem đáp án » 17/07/2024 180

Câu 14:

Kí hiệu k!=k(k1)...2.1,kN* đặt Sn=1.1!+2.2!+...+n.n!. Mệnh đề nào dưới đây là đúng?

Xem đáp án » 16/07/2024 177

Câu hỏi mới nhất

Xem thêm »
Xem thêm »