Câu hỏi:
07/07/2024 155
Quan hệ song song trong không gian có tính chất nào trong các tính chất sau?
Quan hệ song song trong không gian có tính chất nào trong các tính chất sau?
A. Nếu hai mặt phẳng (P) và (Q) song song với nhau thì mọi đường thẳng nằm trong (P) đều song song với (Q).
A. Nếu hai mặt phẳng (P) và (Q) song song với nhau thì mọi đường thẳng nằm trong (P) đều song song với (Q).
B. Nếu hai mặt phẳng (P) và (Q) song song với nhau thì mọi đường thẳng nằm trong (P) đều song song với mọi đường thẳng nằm trong (Q).
C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt (P) và (Q) thì (P) và (Q) song song với nhau.
D. Qua một điểm nằm ngoài mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó.
Trả lời:
Đáp án đúng là: D
Qua một điểm nằm ngoài mặt phắng cho trước ta vẽ được nhiều hơn một đường thẳng song song với mặt phẳng cho trước đó.
Đáp án đúng là: D
Qua một điểm nằm ngoài mặt phắng cho trước ta vẽ được nhiều hơn một đường thẳng song song với mặt phẳng cho trước đó.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tứ diện ABCD với I và J lần lượt là trung điểm các cạnh AB và CD. Mệnh đề nào sau đây đúng?
Cho tứ diện ABCD với I và J lần lượt là trung điểm các cạnh AB và CD. Mệnh đề nào sau đây đúng?
Câu 2:
Cho mặt phẳng (α) và hai đường thẳng chéo nhau a, b cắt (α) tại A và B. Gọi d là đường thẳng thay đổi luôn luôn song song với (α) và cắt a tại M, cắt b tại N. Qua điểm N dựng đường thẳng song song với a cắt (α) tại điểm C.
a) Tứ giác MNCA là hình gì?
Cho mặt phẳng (α) và hai đường thẳng chéo nhau a, b cắt (α) tại A và B. Gọi d là đường thẳng thay đổi luôn luôn song song với (α) và cắt a tại M, cắt b tại N. Qua điểm N dựng đường thẳng song song với a cắt (α) tại điểm C.
a) Tứ giác MNCA là hình gì?
Câu 3:
Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng hoàn toàn khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC và BF sao cho MC = 2MA; NF = 2NB. Qua M, N kẻ các đường thẳng song song với AB, cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng:
a) MN // DE;
Cho hai hình bình hành ABCD và ABEF nằm trong hai mặt phẳng hoàn toàn khác nhau. Lấy các điểm M, N lần lượt thuộc các đường chéo AC và BF sao cho MC = 2MA; NF = 2NB. Qua M, N kẻ các đường thẳng song song với AB, cắt các cạnh AD, AF lần lượt tại M1, N1. Chứng minh rằng:
a) MN // DE;
Câu 4:
Cho hình lăng trụ ABC.A’B’C’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, AA’, A’C’, BC. Ta có:
Cho hình lăng trụ ABC.A’B’C’. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AC, AA’, A’C’, BC. Ta có:
Câu 6:
Cho tam giác ABC. Lấy điểm M trên cạnh AC kéo dài (Hình 1). Mệnh đề nào sau đây là mệnh đề sai?
Cho tam giác ABC. Lấy điểm M trên cạnh AC kéo dài (Hình 1). Mệnh đề nào sau đây là mệnh đề sai?
Câu 7:
Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng 10. M là điểm trên SA sao cho . Một mặt phẳng (α) đi qua M song song với AB và CD, cắt hình chóp theo một tứ giác có diện tích là:
Cho hình chóp tứ giác đều SABCD có cạnh đáy bằng 10. M là điểm trên SA sao cho . Một mặt phẳng (α) đi qua M song song với AB và CD, cắt hình chóp theo một tứ giác có diện tích là:
Câu 8:
Cho hình chóp SABCD với ABCD là hình thoi cạnh a, tam giác SAD đều. M là điểm trên cạnh AB, (α) là mặt phẳng qua M và (α) // (SAD) cắt CD, SC, SD lần lượt tại N, P, Q.
a) Chứng minh rằng MNPQ là hình thang cân.
Cho hình chóp SABCD với ABCD là hình thoi cạnh a, tam giác SAD đều. M là điểm trên cạnh AB, (α) là mặt phẳng qua M và (α) // (SAD) cắt CD, SC, SD lần lượt tại N, P, Q.
a) Chứng minh rằng MNPQ là hình thang cân.
Câu 9:
Cho hình chóp SABCD có đáy ABCD là hình bình hành. Gọi I, J, E, F lần lượt là trung điểm SA, SB, SC, SD. Trong các đường thẳng sau, đường nào không song song với IJ?
Câu 10:
Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của AB và A’B’ và O là một điểm thuộc miền trong của mặt bên CC’D’D. Tìm giao tuyến của mặt phẳng (OMN) với các mặt của hình hộp.
Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của AB và A’B’ và O là một điểm thuộc miền trong của mặt bên CC’D’D. Tìm giao tuyến của mặt phẳng (OMN) với các mặt của hình hộp.
Câu 11:
Cho hình bình hành ABCD và một điểm S không nằm trong mặt phẳng (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là một đường thẳng song song với đường thẳng nào sau đây?
Cho hình bình hành ABCD và một điểm S không nằm trong mặt phẳng (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là một đường thẳng song song với đường thẳng nào sau đây?
Câu 12:
b) Chứng minh rằng điểm C luôn luôn chạy trên một đường thẳng cố định.
Câu 14:
Cho hình chóp SABCD có AC cắt BD tại M, AB cắt CD tại N. Trong các đường thẳng sau đây, đường nào là giao tuyến của (SAC) và (SBD)?
A. SM;
B. SN;
C. SB;
D. SC.
Cho hình chóp SABCD có AC cắt BD tại M, AB cắt CD tại N. Trong các đường thẳng sau đây, đường nào là giao tuyến của (SAC) và (SBD)?
A. SM;
B. SN;
C. SB;
D. SC.