Câu hỏi:
22/07/2024 166Lấy bốn điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng. Cứ qua hai điểm ta vẽ một đường thẳng. Số đường thẳng có thể vẽ được là:
A.3
B.10
C.12
D.4
Trả lời:
Từ 5 điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng ta có thể vẽ được các đường thẳng đi qua hai điểm bất kì như sau:
+ Với điểm M ta có thể nối với các điểm: N, P, Q, K để tạo thành 4 đường thẳng phân biệt.
+ Với điểm N ta có thể nối với các điểm: P, Q, K để tạo thành 3 đường thẳng phân biệt.
+ Với điểm P ta có thể nối với các điểm: Q, K để tạo thành 2 đường thẳng phân biệt.
+ Với điểm Q ta có thể nối với điểm K để tạo thành 1 đường thẳng .
Vậy từ 5 điểm M, N, P, Q, K trong đó không có ba điểm nào thẳng hàng ta có thể vẽ được tất cả:
4 + 3 + 2 + 1 = 10 đường thẳng phân biệt.
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho M thuộc đoạn thẳng AB, AM = 4cm, AB = 6cm. Gọi O là trung điểm của đoạn AB.hiểu
Tính MO.
Câu 2:
Cho điểm I thuộc đoạn thẳng AB. Biết AI = 5cm, AB = 8cm. Tính độ dài BI.
Câu 4:
Cho M thuộc đoạn thẳng AB, AM = 4cm, AB = 6cm. Gọi O là trung điểm của đoạn AB
Trên AB lấy điểm I sao cho AI = 3,5cm. Lấy điểm P là trung điểm của AO. Chọn câu đúng.