Câu hỏi:
13/07/2024 91
Giả sử ở những giây đầu tiên sau khi cất cánh, máy bay chuyển động theo một đường thẳng tạo với mặt đất một góc 20° và có tốc độ 200 km/h. Tính độ cao của máy bay so với mặt đất theo đơn vị mét sau khi máy bay rời khỏi mặt đất 2 giây (làm tròn kết quả đến hàng phần mười).
Giả sử ở những giây đầu tiên sau khi cất cánh, máy bay chuyển động theo một đường thẳng tạo với mặt đất một góc 20° và có tốc độ 200 km/h. Tính độ cao của máy bay so với mặt đất theo đơn vị mét sau khi máy bay rời khỏi mặt đất 2 giây (làm tròn kết quả đến hàng phần mười).
Trả lời:
Đổi 200 km/h = m/s.
Bài toán được mô hình hóa như hình vẽ trên, với OA là quãng đường máy bay bay được sau 2 giây, AH là độ cao của máy bay so với mặt đất khi máy bay rời khỏi mặt đất sau 2 giây, góc là góc giữa đường thẳng được tạo thành khi máy bay cất cánh và mặt đất.
Sau 2 giây máy bay bay được quãng đường là (m).
Hay (m).
Xét tam giác OAH vuông tại H có:
Suy ra
Vậy độ cao của máy bay so với mặt đất sau khi máy bay rời khỏi mặt đất 2 giây là 38,0 m.
Đổi 200 km/h = m/s.
Bài toán được mô hình hóa như hình vẽ trên, với OA là quãng đường máy bay bay được sau 2 giây, AH là độ cao của máy bay so với mặt đất khi máy bay rời khỏi mặt đất sau 2 giây, góc là góc giữa đường thẳng được tạo thành khi máy bay cất cánh và mặt đất.
Sau 2 giây máy bay bay được quãng đường là (m).
Hay (m).
Xét tam giác OAH vuông tại H có:
Suy ra
Vậy độ cao của máy bay so với mặt đất sau khi máy bay rời khỏi mặt đất 2 giây là 38,0 m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA ⊥ (ABCD). Tính số đo của mỗi góc nhị diện sau:
a) [B, SA, D];
Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA ⊥ (ABCD). Tính số đo của mỗi góc nhị diện sau:
a) [B, SA, D];
Câu 3:
Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi α là số đo của góc nhị diện [A, BC, S]. Chứng minh rằng tỉ số diện tích của hai tam giác ABC và SBC bằng cosα.
Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi α là số đo của góc nhị diện [A, BC, S]. Chứng minh rằng tỉ số diện tích của hai tam giác ABC và SBC bằng cosα.
Câu 4:
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình thoi cạnh a và AC = a.
a) Tính số đo của góc nhị diện [B, SA, C].
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình thoi cạnh a và AC = a.
a) Tính số đo của góc nhị diện [B, SA, C].
Câu 5:
c) Biết SA = a, tính số đo của góc giữa đường thẳng SC và mặt phẳng (ABCD).
c) Biết SA = a, tính số đo của góc giữa đường thẳng SC và mặt phẳng (ABCD).
Câu 6:
b) Chứng minh rằng AC ⊥ (SBD). Tính số đo của góc giữa đường thẳng SA và mặt phẳng (SBD).
b) Chứng minh rằng AC ⊥ (SBD). Tính số đo của góc giữa đường thẳng SA và mặt phẳng (SBD).
Câu 7:
Trong Hình 42, máy tính xách tay đang mở gợi nên hình ảnh của một góc nhị diện. Ta gọi số đo góc nhị diện đó là độ mở của màn hình máy tính. Tính độ mở của màn hình máy tính đó, biết tam giác ABC có độ dài các cạnh là AB = AC = 30 cm và cm.
Trong Hình 42, máy tính xách tay đang mở gợi nên hình ảnh của một góc nhị diện. Ta gọi số đo góc nhị diện đó là độ mở của màn hình máy tính. Tính độ mở của màn hình máy tính đó, biết tam giác ABC có độ dài các cạnh là AB = AC = 30 cm và cm.
Câu 8:
Cho góc nhị diện có hai mặt là hai nửa mặt phẳng (P), (Q) và cạnh của góc nhị diện là đường thẳng d.
Qua một điểm O trên đường thẳng d, ta kẻ hai tia Ox, Oy lần lượt thuộc hai nửa mặt phẳng (P), (Q) và cùng vuông góc với đường thẳng d. Góc xOy gọi là góc phẳng nhị diện của góc nhị diện đã cho (Hình 38).
Giả sử góc x’O’y’ cũng là góc phẳng nhị diện của góc nhị diện đã cho với O’ khác O (Hình 39).
Hãy so sánh số đo của hai góc xOy và x’O’y’.
Cho góc nhị diện có hai mặt là hai nửa mặt phẳng (P), (Q) và cạnh của góc nhị diện là đường thẳng d.
Qua một điểm O trên đường thẳng d, ta kẻ hai tia Ox, Oy lần lượt thuộc hai nửa mặt phẳng (P), (Q) và cùng vuông góc với đường thẳng d. Góc xOy gọi là góc phẳng nhị diện của góc nhị diện đã cho (Hình 38).
Giả sử góc x’O’y’ cũng là góc phẳng nhị diện của góc nhị diện đã cho với O’ khác O (Hình 39).
Hãy so sánh số đo của hai góc xOy và x’O’y’.
Câu 9:
Trong không gian cho hai mặt phẳng (α), (β) cắt nhau theo giao tuyến d. Hai mặt phẳng (α), (β) tạo nên bao nhiêu góc nhị diện có cạnh của góc nhị diện là đường thẳng d?
Trong không gian cho hai mặt phẳng (α), (β) cắt nhau theo giao tuyến d. Hai mặt phẳng (α), (β) tạo nên bao nhiêu góc nhị diện có cạnh của góc nhị diện là đường thẳng d?
Câu 10:
Trong Hình 43, xét các góc nhị diện có góc phẳng nhị diện tương ứng là trong cùng mặt phẳng. Lục giác ABCDEG nằm trong mặt phẳng đó có AB = GE = 2 m, BC = DE, Biết rằng khoảng cách từ C và D đến AG là 4 m, AG = 12 m, CD = 1 m. Tìm x, y (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).
Câu 12:
c) Gọi M là trung điểm của cạnh AB. Tính số đo của góc nhị diện [M, SO, D].
c) Gọi M là trung điểm của cạnh AB. Tính số đo của góc nhị diện [M, SO, D].
Câu 13:
b) Góc giữa đường thẳng MO và hình chiếu của đường thẳng đó trên mặt phẳng (P) là góc nào.
b) Góc giữa đường thẳng MO và hình chiếu của đường thẳng đó trên mặt phẳng (P) là góc nào.
Câu 14:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, hai đường thẳng AC và BD cắt nhau tại O, SO ⊥ (ABCD), tam giác SAC là tam giác đều.
a) Tính số đo của góc giữa đường thẳng SA và mặt phẳng (ABCD).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, hai đường thẳng AC và BD cắt nhau tại O, SO ⊥ (ABCD), tam giác SAC là tam giác đều.
a) Tính số đo của góc giữa đường thẳng SA và mặt phẳng (ABCD).
Câu 15:
Hình 32 biểu diễn một chiếc gậy dựa vào tường. Bạn Hoa nói góc nghiêng giữa chiếc gậy và mặt đất bằng 65°.
Góc nghiêng giữa chiếc gậy và mặt đất được hiểu như thế nào?
Hình 32 biểu diễn một chiếc gậy dựa vào tường. Bạn Hoa nói góc nghiêng giữa chiếc gậy và mặt đất bằng 65°.
Góc nghiêng giữa chiếc gậy và mặt đất được hiểu như thế nào?