Câu hỏi:

22/07/2024 168

Chứng minh rằng nếu n + 1 và 2n + 1 (n ∈ N) đều là số chính phương thì n chia hết cho 24.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Vì 2n + 1 là số chính phương. Mà 2n + 1 là số lẻ (do 2n là số chẵn)

Suy ra 2n + 1 chia cho 8 dư 1.

Do đó n chia hết cho 4.

Suy ra n + 1 là số lẻ

Nên n + 1 chia cho 8 dư 1.

Vậy n chia hết cho 8. (1)

Mặt khác:

2n + 1 + n + 1 = 3n + 2 chia cho 3 dư 2.

Do đó (n + 1) + (2n + 1) chia cho 3 dư 2.

Mà n + 1 và 2n + 1 là các số chính phương lẻ

Suy ra n + 1 và 2n + 1 chia cho 3 dư 1.

Nên n chia hết cho 3. (2)

Từ (1) và (2) suy ra n đều chia hết cho cả 3 và 8.

Mà (3; 8) = 1 (3 và 8 là hai số nguyên tố cùng nhau)

Vậy n chia hết cho 24.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB (E ∈ AB); kẻ HF vuông góc với AC (F ∈ AC).

a) Chứng minh: Tứ giác AEHF là hình chữ nhật.

b) Gọi P là điểm đối xứng của H qua AB. Tứ giác APEF là hình gì? Vì sao?

c) Đường thẳng đi qua C và song song với BP, cắt tia PA tại Q. Chứng minh: Q đối xứng với H qua F.

Xem đáp án » 22/07/2024 579

Câu 2:

Phân tích các đa thức sau thành nhân tử:

a) A = 4x3– 8x2+ 4x;

b) B = y2+ x2– 16 – 2xy;

c) C = x3– 8 – 3(2 – x).

Xem đáp án » 18/07/2024 147

Câu 3:

Cho hai đa thức A = 8x3+ 2x2– 8x – 5 và đa thức B = 4x + 1.

a) Thực hiện phép chia đa thức A cho đa thức B. Xác định đa thức thương M và phần dư N.

b) Tìm tất cả các số nguyên x để giá trị của đa thức A chia hết cho giá trị của đa thức B (trên ℤ).

Xem đáp án » 19/07/2024 132

Câu 4:

Tìm x, biết:

a) x(5 – 6x) + (2x – 1)(3x + 4) = 6;

b) x2(x – 2021) – x + 2021 = 0;

c) 2x2– 3x – 5 = 0.

Xem đáp án » 16/07/2024 117

Câu hỏi mới nhất

Xem thêm »
Xem thêm »