Câu hỏi:
22/07/2024 151Cho tứ giác ABCD có = 500, = 800, AD = BC. Gọi E, F lần lượt là trung điểm của các cạnh AB và CD. Tính số đo góc EFC.
A. 750
B. 950
C. 1050
D. 1200
Trả lời:
Gọi G, H lần lượt là trung điểm của AC, BD.
Vì E, G lần lượt là trung điểm của AB, AC nên EG là đường trung bình của tam giác ABC. Suy ra EG = BC, EG // BC.
Chứng minh tương tự ta cũng có:
GF = AD, FH = BC, HE = AD; GF // AD; FH // BC; HE // AD
Mà AD = BC (gt), nên EG = GF = FH = HE
Suy ra: tứ giác EGFH là hình thoi.
Suy ra EF là tia phân giác của góc HFG
=>
= 800 (do GF // AD);
= 500 (do FH // BC)
Do đó = 1800 – () = 500
=> = .500 = 250
Vậy = 250 + 800 = 1050
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thoi ABCD có chu vi bằng 24 cm, đường cao AH bằng 3cm. Tính
Câu 2:
Cho tam giác ABC đều, H là trực tâm, đường cao AD. M là điểm bất kì trên cạnh BC. Gọi E, F lần lượt là hình chiếu của M trên AB, AC, gọi I là trung điểm của đoạn thẳng AM. ID cắt EF tại K. Chọn câu sai.
Câu 3:
Cho hình thoi ABCD có chu vi bằng 16cm, đường cao AH bằng 2cm. Tính các góc của hình thoi. Hãy chọn câu đúng.
Câu 4:
Tứ giác ABCD có AB = CD. Gọi M, N theo thứ tự là trung điểm của BC, AD. Gọi I, K theo thứ tự là trung điểm của AC, BD. Chọn câu đúng nhất.
Câu 5:
Cho tam giác ABCD. Trên các cạnh AB và AC lần lượt lấy hai điểm D và E sao cho BD = CE. Gọi M, N, P, Q thứ tự là trung điểm của BE, CD, DE và BC. Chọn câu đúng nhất.