Câu hỏi:
15/07/2024 131Cho ΔABC cân tại A, có BC = 2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho .
2. Góc BDM bằng với góc nào dưới đây?
A.
B.
C.
D.
Trả lời:
Đáp án B
Ta có: ΔBDM ~ ΔCME (cmt)
=> (do CM = BM (gt))
=>
Xét ΔBDM và ΔMDE ta có:
(gt)
=> ΔBDM ~ ΔMDE (c - g - c)
=> (hai góc tương ứng)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD, điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chọn khẳng định sai.
Câu 2:
Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho DM là tia phân giác của BDE.
1. Chọn khẳng định đúng.
Câu 3:
Cho ΔABC cân tại A, có BC = 2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho .
1. Tính BD.CE bằng
Câu 4:
Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho DM là tia phân giác của BDE.
2. Chọn kết luận đúng.
Câu 5:
Cho hình bình hành ABCD có I là giao điểm của AC và BD. E là một điểm bất kì thuộc BC, qua E kẻ đường thẳng song song với AB và cắt BD, AC, AD tại G, H, F. Chọn kết luận sai?