Câu hỏi:
23/07/2024 430Cho hình bình hành ABCD, điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chọn khẳng định sai.
A. ΔBFE ~ ΔDAE
B. ΔDEG ~ ΔBEA
C. ΔBFE ~ ΔDEA
D. ΔDGE ~ ΔBAE
Trả lời:
Đáp án C
Có ABCD là hình bình hành nên: AD // BC, AB // DC
=> (cặp góc so le trong)
=> (cặp góc so le trong)
Xét tam giác BFE và tam giác DAE có:
(cmt)
(đối đỉnh)
=> ΔBFE ~ ΔDAE (g - g) nên A đúng, C sai.
Xét tam giác DGE và tam giác BAE có:
(cmt)
(đối đỉnh)
=> ΔDGE ~ ΔBAE (g - g) hay ΔDEG ~ ΔBEA nên B, D đúng
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho DM là tia phân giác của BDE.
1. Chọn khẳng định đúng.
Câu 2:
Cho ΔABC cân tại A, có BC = 2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho .
1. Tính BD.CE bằng
Câu 3:
Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho DM là tia phân giác của BDE.
2. Chọn kết luận đúng.
Câu 4:
Cho ΔABC cân tại A, có BC = 2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho .
2. Góc BDM bằng với góc nào dưới đây?
Câu 5:
Cho hình bình hành ABCD có I là giao điểm của AC và BD. E là một điểm bất kì thuộc BC, qua E kẻ đường thẳng song song với AB và cắt BD, AC, AD tại G, H, F. Chọn kết luận sai?