Câu hỏi:
22/07/2024 388Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Trên đường kính AB lấy điểm E sao cho AE = R. Vẽ dây CF đi qua E. Tiếp tuyến của đường tròn tại F cắt đường thẳng CD tại M, dây AF cắt CD tại N. Chọn khẳng định sai.
A. AC // MF
B. ACE cân tại A
C. ABC cân tại C
D. AC // FD
Trả lời:
Xét AOC vuông cân tại O có AC =
=> AC = AE nên AEC cân tại A =>
Hay
mà nên
Ta có
mà nên
Mà hai góc ở vị trí so le trong nên AC // MF
Xét tam giác CAB có CO là đường trung trực của AB nên ACB cân tại C
Phương án A, B, C đúng
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm chính giữa cung BC. Dây AM cắt OC tại E, dây CM cắt đường thẳng AB tại N. Tam giác MCE là tam giác gì?
Câu 2:
Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Trên đường kính AB lấy điểm E sao cho AE = R. Vẽ dây CF đi qua E. Tiếp tuyến của đường tròn tại F cắt đường thẳng CD tại M, dây AF cắt CD tại N. Tính độ dài ON theo R
Câu 3:
Từ A ở ngoài (O) vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác cắt BC, BD lần lượt tại M, N. Vẽ dây BF vuông góc với MN tại H và cắt CD tại E. Tích FE. FB bằng:
Câu 4:
Cho ABC nhọn nội tiếp đường tròn (O). Vẽ phân giác trong AD của góc A (D O). Lấy điểm E thuộc cung nhỏ AC. Nối BE cắt AD và AC lần lượt tại I và tại K, nối DE cắt AC tại J. Kết luận nào đúng?
Câu 5:
Cho (O; R) và dây AB bất kỳ. Gọi M là điểm chính giữa cung nhỏ AB; E, F là hai điểm bất kì trên dây AB. Gọi C, D lần lượt là giao điểm của ME, MF với (O). Khi đó bằng
Câu 6:
Trên đường tròn (O; R) vẽ ba dây liên tiếp bằng nhau AB = BC = CD, mỗi dây có độ dài nhỏ hơn R. Các đường thẳng AB, CD cắt nhau tại I, các tiếp tuyến của (O) tại B và D cắt nhau tại K. Góc BIC bằng góc nào dưới đây?
Câu 7:
Cho đường tròn (O). Từ một điểm M nằm ngoài (O), vẽ các cát tuyến MCA và MBD sao cho góc = 40o. Gọi E là giao điểm của AD và BC. Biết = 70o, số đo cung lớn AB là:
Câu 8:
Cho tam giác ABC nội tiếp trong đường tròn (O). Trên các cung nhỏ AB và AC lần lượt lấy điểm I, K sao cho cung AI = cung AK. Dây IK cắt các cạnh AB, AC lần lượt tại D và E
Câu 9:
Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm chính giữa cung BC. Dây AM cắt OC tại E, dây CM cắt đường thẳng AB tại N. Số đo góc MEC bằng:
Câu 10:
Cho đường tròn (O) và một dây AB. Vẽ đường kính CD vuông góc với AB (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy một điểm N. Các đường thẳng CB và DN lần lượt cắt các đường thẳng AB tại E và F. Tiếp tuyến của đường tròn (O) tại N cắt các đường thẳng AB tại I. Chọn đáp án đúng.
Câu 11:
Cho đường tròn (O) và một dây AB. Vẽ đường kính CD AB (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy điểm M. Các đường thẳng CM, DM cắt đường thẳng AB lần lượt tại E và F. Tiếp tuyến của đường tròn tại M cắt đường thẳng AB tại N. Hai đoạn thẳng nào dưới đây không bằng nhau?
Câu 12:
Cho (O; R) và dây AB bất kỳ. Gọi M là điểm chính giữa cung nhỏ AB; E, F là hai điểm bất kì trên dây AB. Gọi C, D lần lượt là giao điểm của ME, MF với (O). Khi đó bằng
Câu 13:
Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm chính giữa cung BC. Dây AM cắt OC tại E, dây CM cắt đường thẳng AB tại N. Hai đoạn thẳng nào sau đây bằng nhau?
Câu 14:
Cho nửa đường tròn (O) đường kính AB và C là điểm trên cung nhỏ AB (cung CB nhỏ hơn cung CA). Tiếp tuyến tại C của nửa đường tròn cắt đường thẳng AB tại D. Biết tam giác ADC cân tại C. Tính góc ADC
Câu 15:
Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm chính giữa cung BC. Dây AM cắt OC tại E, dây CM cắt đường thẳng AB tại N. Tính diện tích tam giác CON theo R