Câu hỏi:

12/07/2024 99

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x + a\,\,\,\,\,\,khi\,\,x < 2\\4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 2\\ - 3x + b\,\,\,khi\,x > 2\end{array} \right.\).

a) Với a = 0, b = 1, xét tính liên tục của hàm số tại x = 2.

b) Với giá trị nào của a, b thì hàm số liên tục tại x = 2?

c) Với giá trị nào của a, b thì hàm số liên tục trên tập xác định?

Trả lời:

verified Giải bởi Vietjack

Lời giải

a) Với a = 0, b = 1, hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x\,\,\,\,\,\,khi\,\,x < 2\\4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 2\\ - 3x + 1\,\,\,khi\,x > 2\end{array} \right.\)

Với x < 2 thì f(x) = 2x là hàm liên tục.

Với x > 2 thì f(x) = – 3x + 1 là hàm liên tục.

Tại x = 2 ta có: \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} 2x = 4\), \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + 1} \right) = - 5\).

Suy ra \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\). Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\).

Vậy hàm số tiên tục trên ( – ∞; 2) và (2; +∞).

b) Ta có: \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2x + a} \right) = 4 + a\), \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + b} \right) = - 6 + b\)

Để hàm số liên tục tại x = 2 thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow \left\{ \begin{array}{l}4 + a = 4\\ - 6 + b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 10\end{array} \right.\) .

Vậy với a = 0 và b = 10 thì hàm số liên tục tại x = 2.

c) Tập xác định của hàm số là: ℝ.

Để hàm số liên tục trên ℝ thì hàm số liên tục tại x = 2. Vì vậy với a = 0 và b = 10 thỏa mãn điều kiện.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính các giới hạn sau:

a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}}\);

b) \(\lim \frac{{4{n^2} - 3n + 1}}{{3{n^3} + 6{n^2} - 2}}\);

c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}}\);

d) \(\lim \left( {4 - \frac{{{2^{n + 1}}}}{{{3^n}}}} \right)\);

e) \(\lim \frac{{{{4.5}^n} + {2^{n + 2}}}}{{{{6.5}^n}}}\);

g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^n}}}\).

Xem đáp án » 20/07/2024 456

Câu 2:

Cho một tam giác đều ABC cạnh a. Tam giác A1B1C1 có các đỉnh là trung điểm các cạnh của tam giác ABC, tam giác A2B2C2 có các đỉnh là trung điểm các cạnh của tam giác A2B2C2, ..., Tam giác An+1Bn+1Cn+1 có các đỉnh là trung điểm các cạnh của tam giác AnBnCn, ... Gọi p1, p2, ..., pn, ... và S1, S2, ..., Sn, ... theo thứ tự là chu vi và diện tích của tam giác A1B1C1, A2B2C2, ..., AnBnCn, ...

a) Tìm giới hạn của dãy số (pn) và (Sn).

b) Tính các tổng p1 + p2 + ... + pn + ... và S1 + S2 + ... + Sn + ... .

Xem đáp án » 18/07/2024 264

Câu 3:

Từ độ cao 55,8 m của tháp nghiêng Pisa nước Ý, người ta thả một quả bóng cao su chạm xuống đất (Hình 18). Giả sử mỗi lần chạm đất quả bóng lại này lên độ cao bằng \(\frac{1}{{10}}\) độ cao mà quả bóng đạt được trước đó. Gọi Sn là tổng quãng đường di chuyển của quả bóng tính từ lúc thả vật bạn đầu cho đến khi quả bóng đó chạm đất n lần. Tính limSn.

Xem đáp án » 23/07/2024 255

Câu 4:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{6x + 8}}{{5x - 2}}\);

b) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{6x + 8}}{{5x - 2}}\);

c) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {9{x^2} - x + 1} }}{{3x - 2}}\);

d) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {9{x^2} - x + 1} }}{{3x - 2}}\);

e) \(\mathop {\lim }\limits_{x \to - {2^ - }} \frac{{3{x^2} + 4}}{{2x + 4}}\);

g) \(\mathop {\lim }\limits_{x \to - {2^ + }} \frac{{3{x^2} + 4}}{{2x + 4}}\).

Xem đáp án » 25/06/2024 87

Câu 5:

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to - 3} \left( {4{x^2} - 5x + 6} \right)\);

b) \(\mathop {\lim }\limits_{x \to 2} \frac{{2{x^2} - 5x + 2}}{{x - 2}}\);

c) \(\mathop {\lim }\limits_{x \to 4} \frac{{\sqrt x - 2}}{{{x^2} - 16}}\).

Xem đáp án » 21/07/2024 82

Câu 6:

Một thấu kính hội tụ có tiêu cự là f. Gọi d và d’ lần lượt là khoảng cách từ một vật thật AB và từ ảnh A’B’ của nó tới quang tâm O của thấu kính như Hình 19. Công thức thấu kính \(\frac{1}{d} + \frac{1}{{d'}} = \frac{1}{f}\).

a) Tìm biểu thức xác định hàm số d’ = φ(d).

b) Tìm \(\mathop {\lim }\limits_{d \to {f^ + }} \varphi \left( d \right),\mathop {\lim }\limits_{d \to {f^ - }} \varphi \left( d \right)\) và \(\mathop {\lim }\limits_{d \to f} \varphi \left( d \right)\). Giải thích ý nghĩa của các kết quả tìm được.

Media VietJack

Xem đáp án » 22/07/2024 81

Câu hỏi mới nhất

Xem thêm »
Xem thêm »