Câu hỏi:
16/07/2024 125Cho hai hàm số và . Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng:
A. 506
B. 1011
C. 2020
D. 1010
Trả lời:
ĐKXĐ:
Xét phương trình hoành độ giao điểm:
Đặt
Ta có:
BBT:
Dựa vào BBT ta thấy dể phương trình có nghiệm duy nhất thì:
Vậy tổng các giá trị của m thỏa mãn yêu cầu bài toán là: 505+506=1011
Đáp án cần chọn là: B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hai hàm số và . Xét các mệnh đề sau:
Đồ thị của hai hàm số f (x) và g (x) luôn cắt nhau tại một điểm.
Hàm số f(x)+g(x) đồng biến khi a > 1, nghịch biến khi 0<a<1
Đồ thị hàm số f (x) nhận trục Oy làm tiệm cận.
Chỉ có đồ thị hàm số f (x) có tiệm cận.
Hỏi có tất cả bao nhiêu mệnh đề đúng?
Câu 4:
Cho hai hàm số với lần lượt có đồ thị là như hình bên. Mệnh đề nào đúng?
Câu 7:
Đối xứng qua trục hoành của đồ thị hàm số là đồ thị nào trong các đồ thị có phương trình sau đây?
Câu 8:
Cho hàm số . Xét các khẳng định sau:
Khẳng định 1:
Khẳng định 2:
Khẳng định 3:
Khẳng định 4:
Trong các khẳng định trên, có bao nhiêu khẳng định đúng?
Câu 10:
Tập xác định của hàm số là một khoảng có độ dài , với m và n là các số nguyên dương và nguyên tố cùng nhau. Khi đó m – n bằng:
Câu 15:
Cho và các hàm . Trong các khẳng định sau, có bao nhiêu khẳng định đúng?
1)
2)
3)
4)